百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

人人都能看懂的「迭代器、生成器」入门指南

yuyutoo 2025-03-24 22:21 2 浏览 0 评论

来源:早起Python

作者:刘早起

大家好。

这是「人人都能看懂的 Python 进阶」系列。

今天我们将讨论能在很多教程中看到,但又常常搞的头晕转向的迭代器、生成器,以及让新手经常困惑的yield

事实上,和装饰器一样,这三个概念也是绑在一起的,例如你想知道 「什么是yield,那在这之前你必须了解什么是生成器。不过在了解生成器之前,又必须了解什么是迭代器,但在搞明白迭代器之前,你总要知道什么是可迭代对象吧。

下面就让我们按照这个思路,来一点一点前进吧。

01、迭代器

1.1 迭代

在介绍一切之前,先说一下最简单的迭代

>>> for i in range(3):
...    print(i)
0
1
2

就像这样,逐个打印元素的过程就是迭代,这个过程也是我们日常写代码接触到最多的操作。

1.2 可迭代对象

让我们继续,什么是可迭代对象?

就像上面代码一样「能够执行迭代(遍历所有元素)的操作的对象」就是可迭代对象,例如列表

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

就像列表一样,可以使用 for 循环进行迭代的对象,就是可迭代对象,我们常用的字符串、列表、文件等都是可迭代对象。

1.3 对象可迭代的原因

现在相信你应该对「可迭代对象」这个名词有一个大致的了解,为了加深理解,我们继续研究为什么一个对象是可以迭代的

让我们看看当Python解释器遇到迭代操作时,例如for ··· in x是怎么处理的

  • 自动调用 iter(x)函数。
  • 检查对象是否实现了 __iter__ 方法,如果实现了就调用它,获取 一个迭代器。
  • 如果没有实现 __iter__ 方法,但是实现了 __getitem__ 方法, Python 会创建一个迭代器,尝试按顺序(从索引 0 开始)获取元素。
  • 如果两个方法都没有,则会抛出 TypeError 异常,提示该对象不可以迭代

所以「含有 __iter__() 方法或 __getitem__() 方法的对象称之为可迭代对象

让我们来验证上一节定义的list是否有这两个方法

答案是肯定的,当然在Python中有专门的方法去检查一个对象是否可迭代,例如isinstance()

>>> from collections import Iterable
>>> isinstance(mylist, Iterable) 
True

1.4 迭代器

现在来说说相对来说更加抽象一点的迭代器。

简单来说拥有next()方法的可迭代对象就是迭代器,或者说可迭代的对象和迭代器之间的关系是:Python 从可迭代的对象 中获取迭代器。

所以上面说到的列表、元祖、字符串等都不是迭代器,但是,可以使用 Python 内置的 iter() 函数获得它们的迭代器对象,让我们使用迭代器的模式改写之前的案例

>>> mylist = [1,2,3]
>>> it = iter(mylist) #构建迭代器
>>> while True:
        try:
            print(next(it))
        except StopIteration:
            break

1
2
3

上面的代码中先使用可迭代对象构建迭代器 it,不断在迭代器上调用 next 函数,获取下一个元素,如果没有字符了,迭代器会抛出 StopIteration 异常,此时退出循环。

其实看到这里,很多人都会和我一样想,迭代器它到底有什么用或者说在什么场景下我应该使用迭代器呢

实际上很少有人会将好好的 for 循环改写成迭代器形式,大多数教程也是用斐波那契数列来举例,我们学习这些方法背后的原理一方面能更好的理解 Python,并且迭代器也是下面我们要说的生成器的重要基础。

02、生成器

2.1 生成器

现在我们已经知道了for循环背后的机制,但如果数据量太大时,比如for i in range(1000000),使用for循环将所有值存储在内存不仅占用很大的存储空间,并且如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

而生成器的想法就是,我们不需要一次性把这个列表创建出来,只需要记住它的建立规则,之后需要使用的时候一遍计算一遍创建

创建生成器的方法很简单,只需要将列表推导式中的[]换成()就行了,例如

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4

但是我们不能多次执行for i in mygenerator,因为生成器只能使用一次!

另外要强调的是「生成器也是特殊的迭代器」因此它拥有上面几节介绍的迭代器的相关性质!

2.2 yield

最后来说说让任何多人头疼的 yield 语法。

用通俗的话去说,可以将它看成return,只不过它返回的是一个生成器,记住在初学时不需要想明白这个yield到底是什么,但务必了解它的运行机制

下面让我们看一段代码

>>> def f123():
...    print("第一次运行")
...    yield 1
...    print("第二次运行")
...    yield 2
...    print("第三次运行")
...    yield 3
>>> gen = f123()
>>> gen

可以看到,如果一个函数,使用yield关键词返回值,那么它就是一个生成器函数(f123)

与普通函数不同,生成器函数被调用后,其函数体内的代码并不会立即执行(执行gen = f123()后没有打印出任何值),而是返回一个生成器(gen)!

上面说到,生成器也是迭代器,且yield就当作return看,所以下面的代码运行结果是可以轻松猜到的

>>> for item in gen:   
...    print(item)
第一次运行
1
第二次运行
2
第三次运行
3

重点来了,如果使用 next(gen) 会发生什么?

>>> next(gen)
第一次运行
1
>>> next(gen)
第二次运行
2
>>> next(gen)
第三次运行
3
>>> next(gen)
Traceback (most recent call last)
 in 
----> 1 next(gen)

StopIteration: 

我们可以看到, 每次调用next(gen)都只运行到yield位置停止,下一次运行时从上一次结束的位置开始! 并且该生成器的长度取决于函数中yield出现的次数。

在这里想多插一句,虽然我们将yield当成return看,上面的打印出来的1、2、3我们应该将它称为生成值,而不是返回值,这不是某个函数返回的值,而是生成器生成的!希望大家可以再去体会一下!

好了,如果你看明白了上面这个最简单的 yield 函数示例,我们接着看下一个例子,生成器也可以接受参数。

在生成器函数中,如果将 yield 放在左边,就可以使用 send 方法传递参数,注意看下面的案例

def simple_coro2(a):

    print('-> Started: a =', a)
    b = yield a
    print('-> Received: b =', b)
    c = yield a + b

    print('-> Received: c =', c)

gen = simple_gen(14)

这里我们依旧是定义了一个生成器函数,思考一下执行next(gen)会发生什么

>>> next(gen)
-> Started: a = 14
14

上一个例子说到「每次调用next(gen)都只运行到yield位置停止,下一次运行时从上一次结束的位置开始!

所以现在并没有执行b = yield a,仅是将左边yield a执行,生成了a并打印 -> Started: a = 14 消息,然后产出 a 的值,并且暂停,等待为 b 赋值。之后可以使用gen.send(28)来传递28给b

>>> gen.send(28)
-> Received: b = 28
42

依旧是执行到yield a + b结束,并等待等待为 c 赋值。现在如果我们给c赋值会发生什么?

>>> gen.send(99)
-> Received: c = 99
Traceback (most recent call last)
 in 
----> 1 gen.send(99)

StopIteration:

可以看到在把数字 99 发给暂停的生成器;计算 yield 表达式,得到 99,然后把 那个数绑定给 c。打印 -> Received: c = 99 消息然后终止, 导致生成器对象抛出 StopIteration 异常。

现在可以通过下面一张流程图来加深上面案例的过程,可能不太适应这种 = 右边的代码在赋值之前执行并暂停的形式,但是必须要理解,这是掌握 yield 最关键的知识!

好了,以上就是有关 Python 中迭代器、生成器的简单入门讲解!

相关推荐

Mysql和Oracle实现序列自增(oracle创建序列的sql)

Mysql和Oracle实现序列自增/*ORACLE设置自增序列oracle本身不支持如mysql的AUTO_INCREMENT自增方式,我们可以用序列加触发器的形式实现,假如有一个表T_WORKM...

关于Oracle数据库12c 新特性总结(oracle数据库19c与12c)

概述今天主要简单介绍一下Oracle12c的一些新特性,仅供参考。参考:http://docs.oracle.com/database/121/NEWFT/chapter12102.htm#NEWFT...

MySQL CREATE TABLE 简单设计模板交流

推荐用MySQL8.0(2018/4/19发布,开发者说同比5.7快2倍)或同类型以上版本....

mysql学习9:创建数据库(mysql5.5创建数据库)

前言:我也是在学习过程中,不对的地方请谅解showdatabases;#查看数据库表createdatabasename...

MySQL面试题-CREATE TABLE AS 与CREATE TABLE LIKE的区别

执行"CREATETABLE新表ASSELECT*FROM原表;"后,新表与原表的字段一致,但主键、索引不会复制到新表,会把原表的表记录复制到新表。...

Nike Dunk High Volt 和 Bright Spruce 预计将于 12 月推出

在街上看到的PandaDunk的超载可能让一些球鞋迷们望而却步,但Dunk的浪潮仍然强劲,看不到尽头。我们看到的很多版本都是为女性和儿童制作的,这种新配色为后者引入了一种令人耳目一新的新选择,而...

美国多功能舰载雷达及美国海军舰载多功能雷达系统技术介绍

多功能雷达AN/SPY-1的特性和技术能力,该雷达已经在美国海军服役了30多年,其修改-AN/SPY-1A、AN/SPY-1B(V)、AN/SPY-1D、AN/SPY-1D(V),以及雷神...

汽车音响怎么玩,安装技术知识(汽车音响怎么玩,安装技术知识视频)

全面分析汽车音响使用或安装技术常识一:主机是大多数人最熟习的音响器材,有关主机的各种性能及规格,也是耳熟能详的事,以下是一些在使用或安装时,比较需要注意的事项:LOUDNESS:几年前的主机,此按...

【推荐】ProAc Response系列扬声器逐个看

有考牌(公认好声音)扬声器之称ProAcTablette小音箱,相信不少音响发烧友都曾经,或者现在依然持有,正当大家逐渐掌握Tablette的摆位设定与器材配搭之后,下一步就会考虑升级至表现更全...

#本站首晒# 漂洋过海来看你 — BLACK&DECKER 百得 BDH2000L无绳吸尘器 开箱

作者:初吻给了烟sco混迹张大妈时日不短了,手没少剁。家里有了汪星人,吸尘器使用频率相当高,偶尔零星打扫用卧式的实在麻烦(汪星人:你这分明是找借口,我掉毛是满屋子都有,铲屎君都是用卧式满屋子吸的,你...

专题|一个品牌一件产品(英国篇)之Quested(罗杰之声)

Quested(罗杰之声)代表产品:Q212FS品牌介绍Quested(罗杰之声)是录音监听领域的传奇品牌,由英国录音师RogerQuested于1985年创立。在成立Quested之前,Roger...

常用半导体中英对照表(建议收藏)(半导体英文术语)

作为一个源自国外的技术,半导体产业涉及许多英文术语。加之从业者很多都有海外经历或习惯于用英文表达相关技术和工艺节点,这就导致许多英文术语翻译成中文后,仍有不少人照应不上或不知如何翻译。为此,我们整理了...

Fyne Audio F502SP 2.5音路低音反射式落地音箱评测

FyneAudio的F500系列,有新成员了!不过,新成员不是新的款式,却是根据原有款式提出特别版。特别版产品在原有型号后标注了SP字样,意思是SpecialProduction。Fyne一共推出...

有哪些免费的内存数据库(In-Memory Database)

以下是一些常见的免费的内存数据库:1.Redis:Redis是一个开源的内存数据库,它支持多种数据结构,如字符串、哈希表、列表、集合和有序集合。Redis提供了快速的读写操作,并且支持持久化数据到磁...

RazorSQL Mac版(SQL数据库查询工具)

RazorSQLMac特别版是一款看似简单实则功能非常出色的SQL数据库查询、编辑、浏览和管理工具。RazorSQLformac特别版可以帮你管理多个数据库,支持主流的30多种数据库,包括Ca...

取消回复欢迎 发表评论: