百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

GitHub 7.5k star量,各种视觉Transformer的PyTorch合集整理好了

yuyutoo 2025-03-06 21:00 1 浏览 0 评论

机器之心报道

编辑:杜伟

这个项目登上了今天的GitHub Trending。

近一两年,Transformer 跨界 CV 任务不再是什么新鲜事了。

自 2020 年 10 月谷歌提出 Vision Transformer (ViT) 以来,各式各样视觉 Transformer 开始在图像合成、点云处理、视觉 - 语言建模等领域大显身手。

之后,在 PyTorch 中实现 Vision Transformer 成为了研究热点。GitHub 中也出现了很多优秀的项目,今天要介绍的就是其中之一。

该项目名为「vit-pytorch」,它是一个 Vision Transformer 实现,展示了一种在 PyTorch 中仅使用单个 transformer 编码器来实现视觉分类 SOTA 结果的简单方法。

项目当前的 star 量已经达到了 7.5k,创建者为 Phil Wang,ta 在 GitHub 上有 147 个资源库。

项目地址:https://github.com/lucidrains/vit-pytorch

项目作者还提供了一段动图展示:

项目介绍

首先来看 Vision Transformer-PyTorch 的安装、使用、参数、蒸馏等步骤。

第一步是安装:

$ pip install vit-pytorch

第二步是使用:

import torch
from vit_pytorch import ViT

v = ViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 16,
    mlp_dim = 2048,
    dropout = 0.1,
    emb_dropout = 0.1
)

img = torch.randn(1, 3, 256, 256)

preds = v(img) # (1, 1000)

第三步是所需参数,包括如下:

  • image_size:图像大小
  • patch_size:patch 数量
  • num_classes:分类类别的数量
  • dim:线性变换 nn.Linear(..., dim) 后输出张量的最后维
  • depth:Transformer 块的数量
  • heads:多头注意力层中头的数量
  • mlp_dim:MLP(前馈)层的维数
  • channels:图像通道的数量
  • dropout:Dropout rate
  • emb_dropout:嵌入 dropout rate
  • ……

最后是蒸馏,采用的流程出自 Facebook AI 和索邦大学的论文《Training data-efficient image transformers & distillation through attention》

论文地址:https://arxiv.org/pdf/2012.12877.pdf

从 ResNet50(或任何教师网络)蒸馏到 vision transformer 的代码如下:

import torchfrom torchvision.models import resnet50from vit_pytorch.distill import DistillableViT, DistillWrapperteacher = resnet50(pretrained = True)
v = DistillableViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 8,
    mlp_dim = 2048,
    dropout = 0.1,
    emb_dropout = 0.1
)
distiller = DistillWrapper(
    student = v,
    teacher = teacher,
    temperature = 3,           # temperature of distillationalpha = 0.5,               # trade between main loss and distillation losshard = False               # whether to use soft or hard distillation
)
img = torch.randn(2, 3, 256, 256)labels = torch.randint(0, 1000, (2,))
loss = distiller(img, labels)loss.backward()
# after lots of training above ...pred = v(img) # (2, 1000)

除了 Vision Transformer 之外,该项目还提供了 Deep ViT、CaiT、Token-to-Token ViT、PiT 等其他 ViT 变体模型的 PyTorch 实现。

对 ViT 模型 PyTorch 实现感兴趣的读者可以参阅原项目。

相关推荐

网站建设:从新手到高手

现代化网站应用领域非常广泛,从个人形象网站展示、企业商业网站运作、到政府公益等服务网站,各行各业都需要网站建设。大体上可以归结四类:宣传型网站设计、产品型网站制作、电子商务型网站建设、定制型功能网站开...

JetBrains 推出全新 AI 编程工具 Junie,助力高效开发

JetBrains宣布推出名为Junie的全新AI编程工具。这款工具不仅能执行简单的代码生成与检查任务,还能应对编写测试、验证结果等复杂项目,为开发者提供全方位支持。根据SWEBench...

AI也能写代码!代码生成、代码补全、注释生成、代码翻译轻松搞定

清华GLM技术团队打造的多语言代码生成模型CodeGeeX近期更新了新的开源版本「CodeGeeX2-6B」。CodeGeeX2是多语言代码生成模型CodeGeeX的第二代模型,不同于一代CodeG...

一键生成前后端代码,一个36k星的企业级低代码平台

「企业级低代码平台」前后端分离架构SpringBoot2.x,SpringCloud,AntDesign&Vue,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任...

Gitee 代码托管实战指南:5 步完成本地项目云端同步(附避坑要点)

核心流程拆解:远程仓库的搭建登录Gitee官网(注册账号比较简单,大家自行操作),点击“新建仓库”,建议勾选“初始化仓库”和“设置模板文件”(如.gitignore),避免上传临时文件。...

jeecg-boot 源码项目-强烈推荐使用

JEECGBOOT低代码开发平台...

JetBrains推出全新AI编程工具Junie,强调以开发者为中心

IT之家2月1日消息,JetBrains发文,宣布推出一款名为Junie的全新AI编程工具,官方声称这款AI工具既能执行简单的代码生成与检查等基础任务,也能应对“编写测试、验证结...

JetBrains旗下WebStorm和Rider现已加入“非商用免费”阵营

IT之家10月25日消息,软件开发商JetBrains今日宣布,旗下WebStorm(JavaScript开发工具)和Rider(.NET开发工具)现已加入“非商用免费”阵营。如果...

谈谈websocket跨域

了解websocketwebsocket是HTML5的新特性,在客户端和服务端提供了一个基于TCP连接的双向通道。...

websocket调试工具

...

利用webSocket实现消息的实时推送

1.什么是webSocketwebSocket实现实现推送消息WebSocket是HTML5开始提供的一种在单个TCP连接上进行全双工通讯的协议。以前的推送技术使用Ajax轮询,浏览器需...

Flutter UI自动化测试技术方案选型与探索

...

为 Go 开发的 WebSocket 库

#记录我的2024#...

「Java基础」Springboot+Websocket的实现后端数据实时推送

这篇文章主要就是实现这个功能,只演示一个基本的案例。使用的是websocket技术。...

【Spring Boot】WebSocket 的 6 种集成方式

介绍...

取消回复欢迎 发表评论: