百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

重学容器09: Containerd是如何存储容器镜像和数据的

yuyutoo 2024-12-19 17:34 2 浏览 0 评论

前面简单理解了Containerd的架构,本节来看一下Containerd是如何存储镜像和容器的,涉及到内容包括如何镜像存储和RootFS。

从pull镜像到启动容器

Containerd的配置文件中有如下两项配置:

root = "/var/lib/containerd"
state = "/run/containerd"

root配置的目录是用来保存持久化数据的目录,包括content, snapshot, metadataruntime。 下面在一台测试的服务器上,删除所有的镜像和容器后,再执行下面的命令重新初始化一下这些目录,以准备后边的实验。

systemctl stop containerd
rm -rf /var/lib/containerd/*
rm -rf /var/lib/nerdctl/*
systemctl start containerd

完成测试环境初始化后,重新查看/var/lib/containerd目录:

tree /var/lib/containerd/ -L 2
/var/lib/containerd/
├── io.containerd.content.v1.content
│   └── ingest
├── io.containerd.metadata.v1.bolt
│   └── meta.db
├── io.containerd.runtime.v1.linux
├── io.containerd.runtime.v2.task
├── io.containerd.snapshotter.v1.btrfs
├── io.containerd.snapshotter.v1.native
│   └── snapshots
├── io.containerd.snapshotter.v1.overlayfs
│   └── snapshots
└── tmpmounts

/var/lib/containerd的各个子目录很清晰的对应到了content, snapshot, metadataruntime,和containerd的架构示意图中的子系统和组件上:


/var/lib/containerd下各个子目录的名称也可以对应到使用ctr plugin ls查看打印的部分插件名称,实际上这些目录是Containerd的插件用于保存数据的目录,每个插件都可以有自己单独的数据目录,Containerd本身不存储数据,它的所有功能都是通过插件实现的。

下面按照下面containerd的数据流图,依次执行从pull镜像、启动容器、在容器中创建一个文件步骤,并观察containerd的数据目录的变化。


先pull一个镜像:

nerdctl pull redis:alpine3.13
docker.io/library/redis:alpine3.13:                                               resolved       |++++++++++++++++++++++++++++++++++++++|
index-sha256:eaaa58f8757d6f04b2e34ace57a71d79f8468053c198f5758fd2068ac235f303:    done           |++++++++++++++++++++++++++++++++++++++|
manifest-sha256:b7cb70118c9729f8dc019187a4411980418a87e6a837f4846e87130df379e2c8: done           |++++++++++++++++++++++++++++++++++++++|
config-sha256:1690b63e207f6651429bebd716ace700be29d0110a0cfefff5038bb2a7fb6fc7:   done           |++++++++++++++++++++++++++++++++++++++|
layer-sha256:6ab1d05b49730290d3c287ccd34640610423d198e84552a4c2a4e98a46680cfd:    done           |++++++++++++++++++++++++++++++++++++++|
layer-sha256:8cc52074f78e0a2fd174bdd470029cf287b7366bf1b8d3c1f92e2aa8789b92ae:    done           |++++++++++++++++++++++++++++++++++++++|
layer-sha256:aa7854465cce07929842cb49fc92f659de8a559cf521fc7ea8e1b781606b85cd:    done           |++++++++++++++++++++++++++++++++++++++|
layer-sha256:8173c12df40f1578a7b2dfbbc0034a4fbc8ec7c870fd32b9236c2e5e1936616a:    done           |++++++++++++++++++++++++++++++++++++++|
layer-sha256:540db60ca9383eac9e418f78490994d0af424aab7bf6d0e47ac8ed4e2e9bcbba:    done           |++++++++++++++++++++++++++++++++++++++|
layer-sha256:29712d301e8c43bcd4a36da8a8297d5ff7f68c3d4c3f7113244ff03675fa5e9c:    done           |++++++++++++++++++++++++++++++++++++++|
elapsed: 16.4s                                                                    total:  7.7 Mi (481.5 KiB/s)

从上面命令的执行过程来看总共pull了1个index, 1个manifest和6个layer。

io.containerd.metadata.v1.bolt/meta.db是boltdb文件,存储了对images和bundles的持久化引用。 boltdb是一个嵌入式的key/value数据库,containerd的源码文件https://github.com/containerd/containerd/blob/master/metadata/buckets.go头部的注释描述了db schema数据结构。

// keys.
//  ├──version : <varint>                        - Latest version, see migrations
//  └──v1                                        - Schema version bucket
//     ╘══*namespace*
//        ├──labels
//        │  ╘══*key* : <string>                 - Label value
//        ├──image
//        │  ╘══*image name*
//        │     ├──createdat : <binary time>     - Created at
//        │     ├──updatedat : <binary time>     - Updated at
//        │     ├──target
//        │     │  ├──digest : <digest>          - Descriptor digest
//        │     │  ├──mediatype : <string>       - Descriptor media type
//        │     │  └──size : <varint>            - Descriptor size
//        │     └──labels
//        │        ╘══*key* : <string>           - Label value
//        ├──containers
//        │  ╘══*container id*
//        │     ├──createdat : <binary time>     - Created at
//        │     ├──updatedat : <binary time>     - Updated at
//        │     ├──spec : <binary>               - Proto marshaled spec
//        │     ├──image : <string>              - Image name
//        │     ├──snapshotter : <string>        - Snapshotter name
//        │     ├──snapshotKey : <string>        - Snapshot key
//        │     ├──runtime
//        │     │  ├──name : <string>            - Runtime name
//        │     │  ├──extensions
//        │     │  │  ╘══*name* : <binary>       - Proto marshaled extension
//        │     │  └──options : <binary>         - Proto marshaled options
//        │     └──labels
//        │        ╘══*key* : <string>           - Label value
//        ├──snapshots
//        │  ╘══*snapshotter*
//        │     ╘══*snapshot key*
//        │        ├──name : <string>            - Snapshot name in backend
//        │        ├──createdat : <binary time>  - Created at
//        │        ├──updatedat : <binary time>  - Updated at
//        │        ├──parent : <string>          - Parent snapshot name
//        │        ├──children
//        │        │  ╘══*snapshot key* : <nil>  - Child snapshot reference
//        │        └──labels
//        │           ╘══*key* : <string>        - Label value
//        ├──content
//        │  ├──blob
//        │  │  ╘══*blob digest*
//        │  │     ├──createdat : <binary time>  - Created at
//        │  │     ├──updatedat : <binary time>  - Updated at
//        │  │     ├──size : <varint>            - Blob size
//        │  │     └──labels
//        │  │        ╘══*key* : <string>        - Label value
//        │  └──ingests
//        │     ╘══*ingest reference*
//        │        ├──ref : <string>             - Ingest reference in backend
//        │        ├──expireat : <binary time>   - Time to expire ingest
//        │        └──expected : <digest>        - Expected commit digest
//        └──leases
//           ╘══*lease id*
//              ├──createdat : <binary time>     - Created at
//              ├──labels
//              │  ╘══*key* : <string>           - Label value
//              ├──snapshots
//              │  ╘══*snapshotter*
//              │     ╘══*snapshot key* : <nil>  - Snapshot reference
//              ├──content
//              │  ╘══*blob digest* : <nil>      - Content blob reference
//              └──ingests
//                 ╘══*ingest reference* : <nil> - Content ingest reference

可以看出主要记录了关于image, content, snapshots, containers的元数据。这里编写了一个简单的go程序读取打印一下当前boltdb中的内容,注意上面结构描述中的一些binary类型会打印成乱码。

package main

import (
	"fmt"
	"log"

	bolt "go.etcd.io/bbolt"
)
func main() {
	{
		db, err := bolt.Open("/var/lib/continaerd/io.containerd.metadata.v1.bolt/meta.db", 0666, nil)
		if err != nil {
			log.Fatal(err)
		}
		defer db.Close()
		db.View(func(tx *bolt.Tx) error {
			b := tx.Bucket([]byte("v1")).Bucket([]byte("default"))
			space := ""
			travelBucket(b, space)
			return nil
		})
	}

}
func travelBucket(b *bolt.Bucket, space string) {
	space = space + "\t"
	b.ForEach(func(k, v []byte) error {
		if v == nil {
			fmt.Printf("%sbucket=%s: \n", space, k)
			travelBucket(b.Bucket([]byte(k)), space)
		} else {
			fmt.Printf("%skey=%s, value=%s\n", space, k, v)
		}
		return nil
	})

}

到这里只需明白一点,meta.db中存储的是各个存储的元数据。那么实际pull的镜像被存储到哪了呢? 镜像内容被存储到了io.containerd.content.v1.content/blobs/sha256中:

ll io.containerd.content.v1.content/blobs/sha256
total 10668
1690b63e207f6651429bebd716ace700be29d0110a0cfefff5038bb2a7fb6fc7
29712d301e8c43bcd4a36da8a8297d5ff7f68c3d4c3f7113244ff03675fa5e9c
540db60ca9383eac9e418f78490994d0af424aab7bf6d0e47ac8ed4e2e9bcbba
6ab1d05b49730290d3c287ccd34640610423d198e84552a4c2a4e98a46680cfd
8173c12df40f1578a7b2dfbbc0034a4fbc8ec7c870fd32b9236c2e5e1936616a
8cc52074f78e0a2fd174bdd470029cf287b7366bf1b8d3c1f92e2aa8789b92ae
aa7854465cce07929842cb49fc92f659de8a559cf521fc7ea8e1b781606b85cd
b7cb70118c9729f8dc019187a4411980418a87e6a837f4846e87130df379e2c8
eaaa58f8757d6f04b2e34ace57a71d79f8468053c198f5758fd2068ac235f303

上面的9个文件,正好对应1个index文件, 1个config, 1个manifest文件和6个layer文件。index和manifest可以直接用cat命令查看,layer文件可以用tar解压缩。因此content中保存的是config, manifest, tar文件是OCI镜像标准的那套东西。

而实际上containerd也确实是将这些content中的tar解压缩到snapshot中。

查看/var/lib/containerd目录:

tree /var/lib/containerd/ -L 3
/var/lib/containerd/
├── io.containerd.content.v1.content
│   ├── blobs
│   │   └── sha256
│   └── ingest
├── io.containerd.metadata.v1.bolt
│   └── meta.db
├── io.containerd.runtime.v1.linux
├── io.containerd.runtime.v2.task
├── io.containerd.snapshotter.v1.btrfs
├── io.containerd.snapshotter.v1.native
│   └── snapshots
├── io.containerd.snapshotter.v1.overlayfs
│   ├── metadata.db
│   └── snapshots
│       ├── 1
│       ├── 2
│       ├── 3
│       ├── 4
│       ├── 5
│       └── 6
└── tmpmounts

可以看到io.containerd.snapshotter.v1.overlayfs/snapshots中多了名称为1~6的6个子目录,查看这6个目录:

tree /var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/ -L 3
/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/
├── 1
│   ├── fs
│   │   ├── bin
│   │   ├── dev
│   │   ├── etc
│   │   ├── home
│   │   ├── lib
│   │   ├── media
│   │   ├── mnt
│   │   ├── opt
│   │   ├── proc
│   │   ├── root
│   │   ├── run
│   │   ├── sbin
│   │   ├── srv
│   │   ├── sys
│   │   ├── tmp
│   │   ├── usr
│   │   └── var
│   └── work
├── 2
│   ├── fs
│   │   ├── etc
│   │   └── home
│   └── work
├── 3
│   ├── fs
│   │   ├── etc
│   │   ├── lib
│   │   ├── sbin
│   │   ├── usr
│   │   └── var
│   └── work
├── 4
│   ├── fs
│   │   ├── bin
│   │   ├── etc
│   │   ├── lib
│   │   ├── tmp
│   │   ├── usr
│   │   └── var
│   └── work
├── 5
│   ├── fs
│   │   └── data
│   └── work
└── 6
    ├── fs
    │   └── usr
    └── work

containerd的snapshotter的主要作用就是通过mount各个层为容器准备rootfs。containerd默认配置的snapshotter是overlayfs,overlayfs是联合文件系统的一种实现。 overlayfs将只读的镜像层成为lowerdir,将读写的容器层成为upperdir,最后联合挂载呈现出mergedir。

下面启动一个redis容器:

nerdctl run -d --name redis redis:alpine3.13

可以看到io.containerd.snapshotter.v1.overlayfs/snapshots中多了名称为7的目录:

tree /var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/ -L 2
/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/
├── 1
│   ├── fs
│   └── work
├── 2
│   ├── fs
│   └── work
├── 3
│   ├── fs
│   └── work
├── 4
│   ├── fs
│   └── work
├── 5
│   ├── fs
│   └── work
├── 6
│   ├── fs
│   └── work
└── 7
    ├── fs
    └── work

可以使用mount命令查看容器挂载的overlayfs的RootFS:

mount | grep /var/lib/containerd
overlay on /run/containerd/io.containerd.runtime.v2.task/default/8102f7fbee26792830e54e80b3488714ac559e092c59beb2e311cf8e88f475d6/rootfs type overlay (rw,relatime,lowerdir=/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/6/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/5/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/4/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/3/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/2/fs:/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/1/fs,upperdir=/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/7/fs,workdir=/var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/7/work)

可以看出: snapshots/6/fs, snapshots/5/fssnapshots/1/fs为lowerdir,snapshots/7/fs为upperdir。 最终联合挂载合并呈现的目录为/run/containerd/io.containerd.runtime.v2.task/default/8102f7fbee26792830e54e80b3488714ac559e092c59beb2e311cf8e88f475d6/rootfs即为容器的rootfs,ls查看这个目录可以看到一个典型的linux系统目录结构:

ls /run/containerd/io.containerd.runtime.v2.task/default/8102f7fbee26792830e54e80b3488714ac559e092c59beb2e311cf8e88f475d6/rootfs
bin  data  dev  etc  home  lib  media  mnt  opt  proc  root  run  sbin  srv  sys  tmp  usr  var

我们exec到容器中去,并在/root目录中创建一个hello文件:

nerdctl exec -it redis sh
echo hello > /root/hello

在宿主机上的upperdir中可以找到这个文件。在容器中对文件系统做的改动都会体现在upperdir中:

ls /var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/7/fs/root/
hello

containerd的Snapshotter

最后来看一下containerd的Snapshot组件。Snapshot为containerd实现了Snapshotter用于管理文件系统上容器镜像的快照和容器的rootfs挂载和卸载等操作功能。 snapshotter对标Docker中的graphdriver存储驱动的设计。contaienrd在设计上使用snapshotter新模式取代了docker中的graphdriver,其核心开发人员也在其博客中《 Where are containerd’s graph drivers?》中介绍了为什么要这么做。

参考

  • https://github.com/containerd/containerd
  • https://github.com/etcd-io/bbolt
  • Where are containerd’s graph drivers?
  • Contaienrd Snapshots


相关推荐

在lazarus中使用匿名线程

lazarus开源、跨平台,ide稳定、快捷和简洁,是开发国产信创最优选择。尽管lazarus脚本是FreePascal,与delphi的ObjectPascal稍不同,组件库LCL功能、外观相比...

编程金钢钻,我爱Delphi(三)

-----浅谈消息事件驱动模型和面向对象上期谈了最新版的Delphi的编程环境,小白们不要急着编程。在这之前,让我先给你们讲讲消息事件驱动模型和面向对象,作为编程的准备。当然,我会尽量讲得简单,一是我...

Delphi编程防止界面卡死的方法经验分享

Delphi编程防止界面卡死的方法经验分享!1.循环里面防止界面卡死的方法可以使用Application.ProcessMessages;例如下列方法:varn:Integer;begin...

DELPHI学习之「Hook挂钩」

一、什么是Hook挂钩函数Hook使我们可以控制系统事件的发生和处理,能够预演和修改系统事件和消息,在系统范围内阻止系统事件和消息的发生。首先,我们用SetWindowsHookEx(idHook...

Tcp Socket 编程之Delphi与其他语言的字节码通信

关键字:TcpScoket、Delphi、Indy、Python、Twisted对于TcpSocket编程,异种语言之间的通信在日常开发中经常会用到。今天,我们通过Delphi和Pyth...

重要通知!报表控件FastReport VCL将停止支持旧的 Delphi 版本

FastReport是功能齐全的报表控件,可以帮助开发者可以快速并高效地为.NET,VCL,COM,ActiveX应用程序添加报表支持,由于其独特的编程原则,现在已经成为了Delphi平台最优秀的报...

设计模式Delphi版本之单例模式-续

接上篇,细心的朋友可能发现我在上一篇文章中重写类NewInstance和FreeInstance函数,原因是:【在delphi中编译器对构造函数的保护级别进行了处理,即便设为private,编译器仍然...

Delphi基础教程图文版之字符串详解

上午在整理多线程的文章,没注意时间今天发晚了,最近争取日更!!Delphi中的字符一直处于懵懵懂懂的状态,不同于我接触到的其它编程语言在Delphi中居然有好几种字符串,今天好好研究一番!!Delph...

Delphi Event Bus 2.1发布了

DelphiEventBus这个开源项目发布了,这是我用到的最好的开源项目,强烈推荐给大家。前期也有写过这方面的文章,如果你还不知道,可以学习一下,这里不多说了,这个版本改动不大,但意义重大,使...

在 aardio 中嵌入 Delphi 控件

这个例子我放到范例里了:运行这个范例,会自动检测Delphi编写的DLL是否存在,不存在会自动打开Delphi工程,也就是这个文件:...

DELPHI学习之「COM+编程」

COM和ActiveX概述COM技术,是微软公司力推的一项非常重要的开发技术,既是当前软件开发领域的一项技术标准,又是很多高级开发领域的,可能唯一的实现方式。比如:流媒体开发所用到的Direct...

DELPHI学习之「OmniThreadLibrary库」

OmniThreadLibrary是Delphi下的一款用于多线程并发处理的程序库。它的目标是让多线程编程更流畅,成为真正的多线程编程的“可视化”库。它与TThread的区别是让用户专注于线程开发中的...

delphi中关于多线程的例子

在Delphi中使用多线程,我们可以使用`TThread`类来实现。以下是利用Delphi中的多线程的一些例子:1.使用TThread类创建一个简单的匿名线程:varThread:...

Delphi基础教程图文版之线程控制

这个好像并没有什么需要特别说明的东西,所谓的控制包括但不限于启动、暂停、停止和通讯。通讯问题放在后面讲解线程同步时处理Delphi对于多线程的控制同样提供了两套不同的处理方式TThread线程类...

DELPHI学习之「多线程编程」

线程的挂起:要用到Suspend方法来挂起线程线程唤醒:Resume方法来唤醒线程线程终止:利用线程类的Terminate方法来中止线程...

取消回复欢迎 发表评论: