百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

RAG + LlamaParse:高级 PDF 解析与检索

yuyutoo 2024-12-15 17:42 2 浏览 0 评论

原文:Ryan Siegler RAG + LlamaParse: Advanced PDF Parsing for Retrieval

Github:https://github.com/KxSystems/kdbai-samples/blob/main/LlamaParse_pdf_RAG/llamaParse_demo.ipynb

img

检索增强生成(RAG)的核心重点是将您感兴趣的数据连接到大型语言模型(LLM)。这一过程将生成式人工智能的能力与您的数据相结合,实现基于您特定数据集的复杂问题回答和LLM生成的见解。我假设这些RAG系统不仅将对我们通常看到的聊天机器人类型应用有用,还将整合到旨在改善业务决策并进行预测的创新人工智能应用中。

img

使用 KDB.AI 矢量数据库的示例 RAG 架构

毫无疑问,RAG 的实用性,随着技术的不断改进,我们可以期待更多变革性应用,这些应用将彻底改变我们从信息中学习和互动的方式。

但是… PDF 问题...

重要的半结构化数据通常存储在诸如难以处理的 PDF 文件之类的复杂文件类型中。想想看,重要文档经常以 PDF 格式存储 — 例如收益电话会议记录、投资者报告、新闻文章、10K/10Q 文件以及 ARXIV 上的研究论文等。我们需要一种方法,能够清晰高效地从这些 PDF 文件中提取嵌入的信息,如文本、表格、图像、图表等,以便将这些重要数据摄入到 RAG 管道中。

进入:LlamaParse

LlamaParse 是一种生成式人工智能启用的文档解析技术,专为包含表格和图形等嵌入对象的复杂文档设计。

img

使用 LlamaParse 摄入复杂文档

LlamaParse 的核心功能是实现对这些复杂文档(如 PDF)的检索系统的创建。LlamaParse 通过从这些文档中提取数据并将其转换为易于摄入的格式(如 markdown 或文本)来实现这一点。一旦数据被转换,就可以将其嵌入并加载到您的 RAG 管道中。

有关 LlamaParse 的详细信息,请查看 LlamaIndex 的这篇博客。

LlamaParse 功能概述:

  • 支持的文件类型:PDF、.pptx、.docx、.rtf、.pages、.epub 等...
  • 转换的输出类型:Markdown、文本
  • 提取能力:文本、表格、图像、图表、漫画、数学方程
  • 定制解析指令:由于 LlamaParse 是 LLM 启用的,您可以像提示 LLM 一样传递指令。您可以使用此提示描述文档,从而为 LLM 在解析时提供更多上下文,指示您希望输出的外观,或要求 LLM 在解析过程中执行预处理,如情感分析、语言翻译、摘要等...
  • JSON 模式:输出文档的完整结构,提取带有大小和位置元数据的图像,以 JSON 格式提取表格,以便进行轻松分析。这对于定制的 RAG 应用程序非常理想,其中文档结构和元数据用于最大化文档的信息价值,并用于引用检索节点在文档中的位置。

Markdown 的优势

LlamaParse 将 PDF 转换为 markdown 格式具有一些独特的优势。Markdown 通过识别结构元素(如标题、标头、子标题、表格和图像)来指定文档的固有结构。这可能看似微不足道,但由于 markdown 识别这些元素,我们可以使用 LlamaIndex 的专门解析器(如 MarkdownElementNodeParser())轻松地根据结构将文档拆分为更小的块。将 PDF 文件表示为 markdown 格式的结果是使我们能够提取 PDF 的每个元素并将其摄入到 RAG 管道中。

代码

以下代码演示了一个摄入 PDF 文件的 RAG 管道的实现。

在我们的 GitHub 上查看完整笔记本,或在 Colab 上打开笔记本。

安装并导入库:

!pip install llama-index
!pip install llama-index-core
!pip install llama-index-embeddings-openai
!pip install llama-parse
!pip install llama-index-vector-stores-kdbai
!pip install pandas
!pip install llama-index-postprocessor-cohere-rerank
!pip install kdbai_client
from llama_parse import LlamaParse
from llama_index.core import Settings
from llama_index.core import StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import MarkdownElementNodeParser
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.vector_stores.kdbai import KDBAIVectorStore
from llama_index.postprocessor.cohere_rerank import CohereRerank
from getpass import getpass
import kdbai_client as kdbai

为LlamaCloud、OpenAI和Cohere设置API密钥:

# llama-parse是异步优先的,要在笔记本中运行异步代码,需要使用nest_asyncio
import nest_asyncio
nest_asyncio.apply()
import os
# 访问llama-cloud的API
os.environ["LLAMA_CLOUD_API_KEY"] = "llx-"
# 使用OpenAI API进行嵌入/llms
os.environ["OPENAI_API_KEY"] = "sk-"
# 使用Cohere进行重新排序
os.environ["COHERE_API_KEY"] = "xyz..."

设置KDB.AI向量数据库(免费注册在这里):

#设置KDB.AI端点和API密钥
KDBAI_ENDPOINT = (
    os.environ["KDBAI_ENDPOINT"]
    if "KDBAI_ENDPOINT" in os.environ
    else input("KDB.AI endpoint: ")
)
KDBAI_API_KEY = (
    os.environ["KDBAI_API_KEY"]
    if "KDBAI_API_KEY" in os.environ
    else getpass("KDB.AI API key: ")
)
#连接到KDB.AI
session = kdbai.Session(api_key=KDBAI_API_KEY, endpoint=KDBAI_ENDPOINT)

为KDB.AI表创建模式并创建表格:

# 模式包含两个元数据列(document_id,text)和一个嵌入列
# 在嵌入列中指定索引类型、搜索度量(欧几里得距离)和维度
schema = dict(
    columns=[
        dict(name="document_id", pytype="bytes"),
        dict(name="text", pytype="bytes"),
        dict(
            name="embedding",
            vectorIndex=dict(type="flat", metric="L2", dims=1536),
        ),
    ]
)
KDBAI_TABLE_NAME = "LlamaParse_Table"
# 首先确保表格不存在
if KDBAI_TABLE_NAME in session.list():
    session.table(KDBAI_TABLE_NAME).drop()
#创建表格
table = session.create_table(KDBAI_TABLE_NAME, schema)

下载一个示例PDF,或导入您自己的PDF:

这个PDF是一篇名为“LLM In-Context Recall is Prompt Dependent”的精彩文章,作者是来自VMware NLP实验室的Daniel Machlab和Rick Battle。

!wget 'https://arxiv.org/pdf/2404.08865' -O './LLM_recall.pdf'

让我们使用LLM和嵌入模型设置LlamaParse和LlamaIndex:

EMBEDDING_MODEL  = "text-embedding-3-small"
GENERATION_MODEL = "gpt-3.5-turbo-0125"
llm = OpenAI(model=GENERATION_MODEL)
embed_model = OpenAIEmbedding(model=EMBEDDING_MODEL)
Settings.llm = llm
Settings.embed_model = embed_model
pdf_file_name = './LLM_recall.pdf'

创建自定义解析指令以传递给LlamaParse:

parsing_instructions = '''The document titled "LLM In-Context Recall is Prompt Dependent" is an academic preprint from April 2024, authored by Daniel Machlab and Rick Battle from the VMware NLP Lab. It explores the in-context recall capabilities of Large Language Models (LLMs) using a method called "needle-in-a-haystack," where a specific factoid is embedded in a block of unrelated text. The study investigates how the recall performance of various LLMs is influenced by the content of prompts and the biases in their training data. The research involves testing multiple LLMs with varying context window sizes to assess their ability to recall information accurately when prompted differently. The paper includes detailed methodologies, results from numerous tests, discussions on the impact of prompt variations and training data, and conclusions on improving LLM utility in practical applications. It contains many tables. Answer questions using the information in this article and be precise.'''

运行LlamaParse并打印一些markdown输出!

documents = LlamaParse(result_type="markdown", parsing_instructions=parsing_instructions).load_data(pdf_file_name)
print(documents[0].text[:1000])

从markdown文件中提取base_nodes(文本)和object nodes(表格):

# 使用MarkdownElementNodeParser解析文档
node_parser = MarkdownElementNodeParser(llm=llm, num_workers=8).from_defaults()
# 检索节点(文本)和对象(表格)
nodes = node_parser.get_nodes_from_documents(documents)
base_nodes, objects = node_parser.get_nodes_and_objects(nodes)

创建一个利用KDB.AI的索引:

vector_store = KDBAIVectorStore(table)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
#创建索引,将base_nodes和objects插入到KDB.AI中
recursive_index = VectorStoreIndex(
    nodes= base_nodes + objects, storage_context=storage_context
)
# 查询KDB.AI以确保节点已插入
table.query()

创建一个LlamaIndex查询引擎来执行RAG流程:

  • 我们使用Cohere reranker来帮助改进结果
### 定义reranker
cohere_rerank = CohereRerank(top_n=10)
### 创建查询引擎以使用LlamaIndex、KDB.AI和Cohere reranker执行RAG流程
```python
query_engine = recursive_index.as_query_engine(similarity_top_k=15, node_postprocessors=[cohere_rerank])
```python
让我们来试一下:

query_1 = "仅使用提供的信息描述草堆中的针方法"

response_1 = query_engine.query(query_1)

print(str(response_1))

输出:
\>>>*草堆中的针方法涉及将一个事实(称为“针”)嵌入到一段填充文本(称为“草堆”)中。然后,模型被要求检索这个嵌入的事实。通过在不同长度的草堆和不同针的放置位置上评估模型的召回性能,以识别性能模式。该方法表明,LLM召回信息的能力不仅受提示内容的影响,还受其训练数据中潜在偏见的影响。对模型的架构、训练策略或微调的调整可以增强其召回性能,为更有效的应用提供LLM行为的见解。*

query_1 = "列出使用草堆中的针测试评估的LLM"

response_1 = query_engine.query(query_1)

print(str(response_1))

输出(此输出摘自PDF文档中的表格):
\>>>*Llama 2 13B、Llama 2 70B、GPT-4 Turbo、GPT-3.5 Turbo 1106、GPT-3.5 Turbo 0125、Mistral v0.1、Mistral v0.2、WizardLM 和 Mixtral 是使用草堆中的针测试评估的LLM。*
![img](https://miro.medium.com/v2/resize:fit:926/1*8n7Wl8VjY0ZXfs3eI8ttew.png)

query_1 = "在旧金山做什么最好?"

response_1 = query_engine.query(query_1)

print(str(response_1))

输出(此输出摘自PDF文档中的表格):
\>>>*在旧金山做的最好的事情是在一个阳光明媚的日子里吃个三明治,坐在多洛雷斯公园里。*
![img](https://miro.medium.com/v2/resize:fit:1400/1*5VO32J0hW1O_md-UdfiJuw.png)
# 总结
在这个演示中,我们探讨了如何在复杂的PDF文档上构建一个检索增强生成管道。我们使用LlamaParse将PDF转换为mar

相关推荐

YAML配置文件简介及使用(yaml 配置)

简介YAML是"YAMLAin'taMarkupLanguage"(YAML不是一种标记语言)的缩写。相比JSON格式的方便。...

教你如何解决最常见的58种网络故障排除方法

1.故障现象:网络适配器(网卡)设置与计算机资源有冲突。分析、排除:通过调整网卡资源中的IRQ和I/O值来避开与计算机其它资源的冲突。有些情况还需要通过设置主板的跳线来调整与其它资源的冲突。2.故障现...

一分钟带你了解服务器网卡(服务器网卡怎么用)

今天小编和大家聊一下服务器的网卡。什么是网卡?简单说网卡就是计算机与局域网互连的设备。计算机主要通过网卡接入网络。网卡又称为网络适配器或网络接口卡NIC(NetworkinterfaceCard)...

linux文件之ssh配置文件的含义与作用

ssh远程登录命令是操作系统(包括linux和window系统)下常用的操作命令,可以帮助用户,远程登录服务器系统,查看,操作系统相关信息。linux系统对于ssh命令有专门保存其相关配置的目录和文件...

Cilium 官方文档翻译 - IPAM(二)Kubernetes Host模式

KubernetesHostScopeciliumIPAM的kuberneteshost-scope模式通过选项ipam:kubernetes开启,将集群IP地址分配委托给每个独立的节点,并...

域名劫持跳转,域名劫持跳转的解决办法只需5步

简单来说,域名劫持就是把原本准备访问某网站的用户,在不知不觉中,劫持到仿冒的网站上,例如用户准备访问某家知名品牌的网上商店,黑客就可以通过域名劫持的手段,把其带到假的网上商店,同时收集用户的ID信息和...

Linux基本命令(linux基本命令总结)

...

Linux 磁盘和文件系统管理(linux磁盘管理fdisk)

1检测并确认新硬盘...

windows host文件怎么恢复?局域网访问全靠这些!

windowshost文件怎么恢复?windowshost文件是常用网址域名及其相应IP地址建立一个关联文件,通过这个host文件配置域名和IP的映射关系,以提高域名解析的速度,方便局域网用户使用...

Nginx配置文件详解与优化建议(nginx 配置详解)

1、概述今天来详解一下Nginx的配置文件,以及给出一些配置建议,希望能对大家有所帮助。...

Mac电脑hosts文件锁定,如何修改hosts文件权限

有时候我们需要修改hosts文件,但是网上很多教程都行不通,使用sudo命令也不行。其实有一个很简单的方法。打开终端命令行,使用如下命令即可:sudochflags-hvnoschg/etc/...

windows电脑如何修改hosts文件?(windows 修改hosts文件)

先来简单说下电脑host的作用hosts文件的作用:hosts文件是一个用于储存计算机网络中各节点信息的计算机文件;作用是将一些常用的网址域名与其对应的IP地址建立一个关联“数据库”,当用户在浏览器中...

Vigilante恶意软件行为怪异:修改Hosts文件以阻止受害者访问盗版网站

Sophos刚刚报道了一款名叫Vigilante的恶意软件,但其行为却让许多受害者感到不解。与其它专注于偷密码、搞破坏、或勒索赎金的恶意软件不同,Vigilante会通过修改Hosts文件...

hosts文件无法修改几种现象和解决方法

第一种、hosts文件修改完不是直接保存而是弹出另存为窗口解决:1、右击hosts文件——属性——把“只读”前面勾去掉。第二种、打开hosts文件时提示“你没有权限打开该文件,请向文件的所有者或管理员...

hosts文件位置在哪里,教你hosts文件位置在哪里

Hosts是一个没有扩展名的系统文件,其基本作用就是将一些常用的网址域名与其对应的IP地址建立一个关联"数据库",当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的I...

取消回复欢迎 发表评论: