C语言数据结构:什么是树?什么是二叉树?
yuyutoo 2024-10-23 16:44 12 浏览 0 评论
在二叉树之前的数据结构学习中,我们学习了顺序表、链表、栈、队列这几种结构,它们都是用链表或者数组的方式来实现的,主要考察我们对结构体的运用!
今天让我们来学习一个新的数据结构,也就是下面这副图里面的树
啊不好意思,图拿错了!????
是下面这个才对
1.什么是树?
1.1树的概念
树是一种非线性的数据结构,它是由n个有限节点组成的具有一定层次关系的集合。
把它叫做树是因为它看起来的确像一个树的根部
当然也可以理解为是树干在上,树叶在下的结构
有一个特殊的节点,被称为根节点,也就是树的开头
除了根节点外,其余节点都是,个互不相交的集合。每一个集合都是一颗与树的结构类似的子树
每一个节点只能有一个前驱,但是可以有很多个后驱
因此,树是递归定义的
树中的子节点不能有交集
上图中的B节点不能有G这个孩子,因为G已经有父母C了
同理,G节点也不能同时拥有两对父母
子节点之间也不能相连,如E和F不能相连
1.2树的相关知识点
节点的度:一个节点含有的子树的个数称为该节点的度; 如下图:A的度为6
叶节点或终端节点:度为0的节点称为叶节点; 图中B、C、H、I…等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图中D、E、F、G…等节点为分支节点
简单的说,就是有娃的节点就是分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图,D是H的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:H是D的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如下图:P、Q是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 示例中树的度为6(即A的度)
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推
树的高度或深度:树中节点的最大层次; 示例中树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如下图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;示例中A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。示例中所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林
多个不相交的树就是森林
1.3树的代码表示
表示树的方式有很多种,比如下面这种
#define N 5 //指定树的度为5
struct TreeNode
{
int data;
struct TreeNode* subs[N];//用指针数组存放孩子节点的指针
};
但这种方法不够优,给大家展示一个用的最广泛的方法——孩子兄弟表示法
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};
通过这种方法,父亲节点只需要保存它的第一个娃,其他娃就让大娃的兄弟节点来找
也就是家长只用管老大,老大管老二,老二管老三,依次往下……
实际写代码的结构大概是下图这样
2.二叉树
在实际中,二叉树是使用较多的一种树的结构
2.1概念
二叉树是度为2的树,它是一个特殊的树
二叉树不存在度大于2的节点
二叉树是有序树,它的娃(子树)有左右之分,次序不能颠倒
所以,二叉树都是由下面各类节点组成的树
2.2特殊的二叉树
满二叉树:如果每一个层的节点数都达到最大值,那这个二叉树就是满二叉树。也就是说:满二叉树的层数为k,且节点总数是2k-1
满二叉树的节点数是一个等比数列公式
2 0 + 2 1 + 2 2 + . . . + 2 k ? 1 = 1 ? ( 1 ? 2 k ) / ( 1 ? 2 ) = 2 k ? 1 2^0+2^1+2^2+...+2^{k-1}=1*(1-2^k)/(1-2)=2^k -1 20+21+22+...+2k?1=1?(1?2k)/(1?2)=2k?1
完全二叉树:完全二叉树是效率很高的数据结构。对于深度为K,有n个节点的二叉树,当且仅当每一个节点都与深度为K的满二叉树中编号从1至n的节点一一对应时,称为完全二叉树。
简单说来,完全二叉树的最后一层不一定满,但必须要从左到右连续
满二叉树是一个特殊的完全二叉树
2.3二叉树的性质
若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有?2(i-1)??个结点
若规定根节点的层数为1,则深度为h的二叉树的最大结点数是??2h-1??
对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为n2,则有??n0 = n2+1??
若规定根节点的层数为1,具有n个结点的满二叉树的深度,??h=log2(n+1) ??。 (ps: 是log以2为底,n+1为对数)
对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
若??i>0??,i位置节点的双亲序号:??(i-1)/2??;i=0,i为根节点编号,无双亲节点
若??2i+1<n??,左孩子序号:2i+1,2i+1>=n否则无左孩子
若??2i+2<n??,右孩子序号:2i+2,2i+2>=n否则无右孩子
2.4几个选择题
1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200 √
C 198
D 199
//叶子节点的数量 总比度为2的节点多1
2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n √
B n+1
C n-1
D n/2
//N0+N1+N2=2n
//2N0+N1-1=2n
//N1只有0和1两种可能,因为n为整数,2n为偶数,所以2N0=2n,N0=n
3.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A 11
B 10 √
C 8
D 12
//假设高度是h
//完全二叉树节点最多2^h -1
// 最少2^(h-1)-1 +1
//可以通过这两个公式,推断出h=10
3.二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构
3.1顺序存储
顺序结构存储就是使用数组来存储
一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。
现实使用中只有堆才会使用数组来存储
下一篇博客会带大家认识??堆??这个特殊的树形结构(和内存里面那个堆????没啥关系哈)
看到这张图,你肯定想问,如果用数组结构存储,那还怎么还原出一颗树????呢?
这里我们需要理解物理存储和逻辑结构的关系
二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树
那怎么计算这种情况下的父亲和娃呢?
leftchild=parent*2+1
rightchild=parent*2+2
parent=(child-1)/2
怎么样,是不是忽然感觉妙级了?
3.2链式存储
这就就没啥好说的啦,使用一个简单的二叉链就能构成二叉树
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点的值
}
结语
嘿嘿嘿,本篇博客到这里就结束啦!
-----------------------------------
?著作权归作者所有:来自51CTO博客作者慕雪年华的原创作品,原文链接:https://blog.51cto.com/u_15307009/5202047,侵删
写在最后:另外,对于准备学习C/C++编程的小伙伴,如果你想更好的提升你的编程核心能力(内功)不妨从现在开始!
编程学习书籍分享:
编程学习视频分享:
整理分享(多年学习的源码、项目实战视频、项目笔记,基础入门教程)
欢迎转行和学习编程的伙伴,利用更多的资料学习成长比自己琢磨更快哦!
对于C/C++感兴趣可以关注小编在后台私信我:【编程交流】一起来学习哦!可以领取一些C/C++的项目学习视频资料哦!已经设置好了关键词自动回复,自动领取就好了!
相关推荐
- java把多张图片导入到PDF文件中(java如果导入图片到项目)
-
packagecom.mlh.utils;importcom.itextpdf.text.*;importcom.itextpdf.text.Font;importcom.itextp...
- 聊聊langchain4j的AiServicesAutoConfig
-
序本文主要研究一下langchain4j-spring-boot-starter的AiServicesAutoConfig...
- Spring 中三种 BeanName 生成器!(spring生成bean过程)
-
无论我们是通过XML文件,还是Java代码,亦或是包扫描的方式去注册Bean,都可以不设置BeanName,而Spring均会为之提供默认的beanName,今天我们就来看看Spr...
- Zookeeper实现微服务统一配置中心
-
Zookeeper介绍本质它是一个分布式服务框架,是ApacheHadoop的一个子项目...
- 从Nacos客户端视角来分析一下配置中心实现原理
-
目录...
- Python 中容易被新手忽略的问题(python容易犯的错误)
-
设置全局变量有时候设置全局变量的需求并不是直接赋值,而是想从某个数据结构里引用生成,可以用下面这两种方法,推荐第二种,golbals()支持字典用法很方便。...
- Springboot实现对配置文件中的明文密码加密
-
我们在SpringBoot项目当中,会把数据库的用户名密码等配置直接放在yaml或者properties文件中,这样维护数据库的密码等敏感信息显然是有一定风险的,如果相关的配置文件被有心之人拿到,必然...
- 是时候丢掉BeanUtils了(丢掉了时间)
-
前言为了更好的进行开发和维护,我们都会对程序进行分层设计,例如常见的三层,四层,每层各司其职,相互配合。也随着分层,出现了VO,BO,PO,DTO,每层都会处理自己的数据对象,然后向上传递,这就避免不...
- EasyExcel自定义合并单元格多行合并根据自定义字段
-
第一种方式实现通过定义注解+实现RowWriteHandler接口中的afterRowDispose方法来动态合并行根据指定的key可以是单个字段也可以是多个字段也可以根据注解指定。注解方式使用参考原...
- 太香了!女朋友熬夜帮我整理的Spring Boot - Banner 笔记,分享给你
-
上一篇分享的是《Java避坑指南!IDEA查看.class文件源码下载失败问题汇总》,这篇给大家分享《SpringBoot-自定义Banner图案》。...
- 基于SpringCloud的enum枚举值国际化处理实践
-
背景选用SpringCloud框架搭建微服务做业务后台应用时,会涉及到大量的业务状态值定义,一般常规做法是:持久层(数据库)存储int类型的值后台系统里用阅读性好一点儿的常量将int类型的值做一层映射...
- Lucene就是这么简单(好女婿你以后就是妈妈的老公了)
-
什么是Lucene??Lucene是apache软件基金会发布的一个开放源代码的全文检索引擎工具包,由资深全文检索专家DougCutting所撰写,它是一个全文检索引擎的架构,提供了完整的创建索引和...
- 注解@Autowired和@Resource的区别总结
-
零、前言@Autowired和@Resource注解都可以在Spring应用中进行声明式的依赖注入。以前都是看的网上关于两者的区别,但是实际和网上说的有出入,故从源码角度进行分析、验证。...
- 100个Java工具类之73:系统信息获取工具类SystemUtils
-
SystemUtils是一个功能强大的工具类。可以获取系统属性、检测java版本、处理跨平台文本文件,合理地使用此类,可以使代码更健壮,系统更安全。...
你 发表评论:
欢迎- 一周热门
-
-
前端面试:iframe 的优缺点? iframe有那些缺点
-
带斜线的表头制作好了,如何填充内容?这几种方法你更喜欢哪个?
-
漫学笔记之PHP.ini常用的配置信息
-
其实模版网站在开发工作中很重要,推荐几个参考站给大家
-
推荐7个模板代码和其他游戏源码下载的网址
-
[干货] JAVA - JVM - 2 内存两分 [干货]+java+-+jvm+-+2+内存两分吗
-
正在学习使用python搭建自动化测试框架?这个系统包你可能会用到
-
织梦(Dedecms)建站教程 织梦建站详细步骤
-
【开源分享】2024PHP在线客服系统源码(搭建教程+终身使用)
-
2024PHP在线客服系统源码+完全开源 带详细搭建教程
-
- 最近发表
-
- java把多张图片导入到PDF文件中(java如果导入图片到项目)
- 聊聊langchain4j的AiServicesAutoConfig
- Spring 中三种 BeanName 生成器!(spring生成bean过程)
- Zookeeper实现微服务统一配置中心
- Spring cloud Gateway 动态路由(springboot gateway 动态路由)
- 从Nacos客户端视角来分析一下配置中心实现原理
- Python 中容易被新手忽略的问题(python容易犯的错误)
- Springboot实现对配置文件中的明文密码加密
- 是时候丢掉BeanUtils了(丢掉了时间)
- EasyExcel自定义合并单元格多行合并根据自定义字段
- 标签列表
-
- mybatis plus (70)
- scheduledtask (71)
- css滚动条 (60)
- java学生成绩管理系统 (59)
- 结构体数组 (69)
- databasemetadata (64)
- javastatic (68)
- jsp实用教程 (53)
- fontawesome (57)
- widget开发 (57)
- vb net教程 (62)
- hibernate 教程 (63)
- case语句 (57)
- svn连接 (74)
- directoryindex (69)
- session timeout (58)
- textbox换行 (67)
- extension_dir (64)
- linearlayout (58)
- vba高级教程 (75)
- iframe用法 (58)
- sqlparameter (59)
- trim函数 (59)
- flex布局 (63)
- contextloaderlistener (56)