动作识别与关系推理 动作识别综述
yuyutoo 2024-10-21 12:12 2 浏览 0 评论
作者:知乎—寒寒寒寒寒啊
地址:https://www.zhihu.com/people/han-han-han-han-han-a-5
关注action recognition大概3个多月,从做videonet的竞赛到公司实习,都在做动作识别相关算法的研究,19年cvpr,iccv关于动作识别相关paper的研究重点来看,其中有两个我比较关注:long-term和relation modeling,long-term的motivation比较直接,之前的动作识别算法无论是基于frame level的TSN以及后续针对TSN做的改进算法如eco,trn,tsm等,还是基于3D卷积的i3d,p3d等,其都是short或者说middle term的,其只能关注到几秒的视频片段,但对于长时序的动作来说,是不够的,所以如何建模几十秒甚至分钟级别是非常重要的,Long-Term Feature Banks for Detailed Video Understanding通过建立一个长时序的特征库,去计算短期的特征与长期特征的交互来获得long-term的特征。
另外一个感兴趣的研究重点则是关系推理,关系推理最早是DeepMind的A simple neural network module for relational reasoning提出的,通过采用cnn提取的feature作为object来建模两两object之间的relation去做reasoning,取得了不错的效果,如下图,将特征图不同颜色的object两两配对并与LSTM提取的文字特征进行concat,然后通过几层FC去获得最终的结果。
后面将通过几篇相关论文展现动作识别领域是如何建模关系来进行推理的。
1:Videos as Space-Time Region Graphs
自Non-local Neural Networks问世,被广泛应用到各个领域并且都获得很不错的效果,其motivation首先是做视频上的long-range的,通过计算不同帧所有像素点特征的加权和去获得当前位置的响应,从而克服卷积只能处理某一个局部区域而无法得到全局信息的缺点。其也可以看做是在做relation,计算的是某两个pixel之间的相似度,而不是两两object之间的相似度。那如果能之间从视频帧中检测出来对动作分类有意义的object,然后再建模这些object之间的联系岂不是更加直接?就像要做喝水动作的识别,我们直接将每一帧的水杯以及喝水的人检测出来,然后当做nodes放入graph中去做relation,应该可以很好地建模出spatial上人与水杯以及temporal上的相同人与相同水杯之间的关系,这其实也是后面Videos as Space-Time Region Graphs这篇文章的思路。如下图,将正在翻阅一本书的人以及书分别给检测出来,则能够建立不仅仅是spatial并且temporal上的信息了。
下图是文章网络结构的pipline,首先输入的视频帧序列通过I3D网络得到T×H×W×d的feature,通过RPN获取T帧中每一帧上物体的bbox,然后通过ROIAlign得到每个物体的feature map再maxpool得到d维的feature vector,作为每个物体的特征,而后将这n个特征作为nodes送入Graph中建模不同object之间的关系。
2:Graph Convolutional Networks for Temporal Action Localization
这是19年iccv中一篇将图模型用于temporal action detection(action localization)的文章,temporal action detection类似于object detection,只不过其是在时间维度进行detection,故很多方法也是沿用object detection来的。本文的motivation是之前的方法没有关注到不同proposal之间的关系,如果能够利用图网络去建立两两proposal之间的relation,那么会对detection的结果有帮助。
如上图,首先使用BSN方法去获得输入视频帧的proposals,而后通过两条规则去建立图的边:(1) Contextual Edges:I(pi,pj)代表temporal上两个proposals之间的交集,U(pi,pj)代表temporal上两个proposals之间的并集,那么r(pi,pj)则代表temporal上两个proposals的重叠度,当r(pi,pj)>θctx(论文中取0.7)时,这两个proposals连边。
但Contextual Edges只考虑到了重叠度很高的情况,大概率这两个proposals是属于同一个action class的,但如果是重叠度没这么高的proposals应该也需要建立联系(2)Surrounding Edges:|ci - cj|代表两个proposals之间中心点坐标的差值,当d(pi,pj)<θsur时,这两个proposals连边,则考虑了两个大概率不是同一个class的proposals之间的联系。
图建立好了以后通过图卷积则可以找到不同proposals之间的relation了。
3:Learning Actor Relation Graphs for Group Activity Recognition
本文是19年cvpr的一篇关于用图模型去model排球比赛中不同运动员之间的relation的文章,思路与上一篇文章很相似,motivation就是在类似排球这种的团体运动中,如果能够建立不同运动员之间的联系,那么能够很好地帮助进行团体运动的分类。如下图,如果可以知道红色的点是在扣杀,周围蓝色的点是站立,黄色的点是在阻挡,那么可以轻松的认为这个片段是左边扣杀。
跟上篇文章类似,首先输入是视频片段与每一帧每一个球员的bounding box(个人感觉bbox提前给定还是有点太直接了,可能是因为如果使用检测方法去检测的话,应该会存在漏检或误检的问题吧,但这也是需要解决的一个难题),由于排球运动中球员数量是一定的12个,所以每一帧就有12个bbox。文章采用TSN的稀疏采样的方法,如下图采取的3帧,通过CNN提取特征了之后,与bbox送入ROIAlign层获得d维的feature vector,总共得到N个feature vector。对于这N个feature,每两个之间连一条边构造图网络,以model不同actor之间的关系。对于不同proposals之间的relation,文中提出了Appearance relation与Position relation两种方法。
个人认为,视频不同于图像,图像中的信息是静态的,大多表示图像中物体是什么,但视频由于是多帧的图像的集合,是带有时序信息的,可以描述为视频中人与人,人与物的交互,那么关系推理就显得格外的重要了,如果能利用图模型有效地建立不同objects之间的关系,应该能很大程度的提高performance的吧。
参考文献:
【1】Wang L, Xiong Y, Wang Z, et al. Temporal segment networks: Towards good practices for deep action recognition[C]//European conference on computer vision. Springer, Cham, 2016: 20-36.
【2】Wu C Y, Feichtenhofer C, Fan H, et al. Long-term feature banks for detailed video understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 284-293.
【3】Santoro A, Raposo D, Barrett D G, et al. A simple neural network module for relational reasoning[C]//Advances in neural information processing systems. 2017: 4967-4976.
【4】Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7794-7803.
【5】Wang X, Gupta A. Videos as space-time region graphs[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 399-417.
【6】Zeng R, Huang W, Tan M, et al. Graph Convolutional Networks for Temporal Action Localization[J]. arXiv preprint arXiv:1909.03252, 2019.
【7】Wu J, Wang L, Wang L, et al. Learning Actor Relation Graphs for Group Activity Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 9964-9974.
相关推荐
- 史上最全的浏览器兼容性问题和解决方案
-
微信ID:WEB_wysj(点击关注)◎◎◎◎◎◎◎◎◎一┳═┻︻▄(页底留言开放,欢迎来吐槽)●●●...
-
- 平面设计基础知识_平面设计基础知识实验收获与总结
-
CSS构造颜色,背景与图像1.使用span更好的控制文本中局部区域的文本:文本;2.使用display属性提供区块转变:display:inline(是内联的...
-
2025-02-21 16:01 yuyutoo
- 写作排版简单三步就行-工具篇_作文排版模板
-
和我们工作中日常word排版内部交流不同,这篇教程介绍的写作排版主要是用于“微信公众号、头条号”网络展示。写作展现的是我的思考,排版是让写作在网格上更好地展现。在写作上花费时间是有累积复利优势的,在排...
- 写一个2048的游戏_2048小游戏功能实现
-
1.创建HTML文件1.打开一个文本编辑器,例如Notepad++、SublimeText、VisualStudioCode等。2.将以下HTML代码复制并粘贴到文本编辑器中:html...
- 今天你穿“短袖”了吗?青岛最高23℃!接下来几天气温更刺激……
-
最近的天气暖和得让很多小伙伴们喊“热”!!! 昨天的气温到底升得有多高呢?你家有没有榜上有名?...
- CSS不规则卡片,纯CSS制作优惠券样式,CSS实现锯齿样式
-
之前也有写过CSS优惠券样式《CSS3径向渐变实现优惠券波浪造型》,这次再来温习一遍,并且将更为详细的讲解,从布局到具体样式说明,最后定义CSS变量,自定义主题颜色。布局...
- 你的自我界限够强大吗?_你的自我界限够强大吗英文
-
我的结果:A、该设立新的界限...
- 行内元素与块级元素,以及区别_行内元素和块级元素有什么区别?
-
行内元素与块级元素首先,CSS规范规定,每个元素都有display属性,确定该元素的类型,每个元素都有默认的display值,分别为块级(block)、行内(inline)。块级元素:(以下列举比较常...
-
- 让“成都速度”跑得潇潇洒洒,地上地下共享轨交繁华
-
去年的两会期间,习近平总书记在参加人大会议四川代表团审议时,对治蜀兴川提出了明确要求,指明了前行方向,并带来了“祝四川人民的生活越来越安逸”的美好祝福。又是一年...
-
2025-02-21 16:00 yuyutoo
- 今年国家综合性消防救援队伍计划招录消防员15000名
-
记者24日从应急管理部获悉,国家综合性消防救援队伍2023年消防员招录工作已正式启动。今年共计划招录消防员15000名,其中高校应届毕业生5000名、退役士兵5000名、社会青年5000名。本次招录的...
- 一起盘点最新 Chrome v133 的5大主流特性 ?
-
1.CSS的高级attr()方法CSSattr()函数是CSSLevel5中用于检索DOM元素的属性值并将其用于CSS属性值,类似于var()函数替换自定义属性值的方式。...
- 竞走团体世锦赛5月太仓举行 世界冠军杨家玉担任形象大使
-
style="text-align:center;"data-mce-style="text-align:...
- 学物理能做什么?_学物理能做什么 卢昌海
-
作者:曹则贤中国科学院物理研究所原标题:《物理学:ASourceofPowerforMan》在2006年中央电视台《对话》栏目的某期节目中,主持人问过我一个的问题:“学物理的人,如果日后不...
-
- 你不知道的关于这只眯眼兔的6个小秘密
-
在你们忙着给熊本君做表情包的时候,要知道,最先在网络上引起轰动的可是这只脸上只有两条缝的兔子——兔斯基。今年,它更是迎来了自己的10岁生日。①关于德艺双馨“老艺...
-
2025-02-21 16:00 yuyutoo
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- mybatis plus (70)
- scheduledtask (71)
- css滚动条 (60)
- java学生成绩管理系统 (59)
- 结构体数组 (69)
- databasemetadata (64)
- javastatic (68)
- jsp实用教程 (53)
- fontawesome (57)
- widget开发 (57)
- vb net教程 (62)
- hibernate 教程 (63)
- case语句 (57)
- svn连接 (74)
- directoryindex (69)
- session timeout (58)
- textbox换行 (67)
- extension_dir (64)
- linearlayout (58)
- vba高级教程 (75)
- iframe用法 (58)
- sqlparameter (59)
- trim函数 (59)
- flex布局 (63)
- contextloaderlistener (56)