前沿丨波士顿动力机器狗装上ChatGPT大脑,一开口就是老伦敦腔
yuyutoo 2024-10-18 12:12 1 浏览 0 评论
转自 机器之心
编辑:蛋酱、大盘鸡
我们看过机器狗攀爬、跳跃、跑酷、开门,但现在,它竟然开口说话了。
「可以开始我们的旅程了吗?」Spot 礼貌地发出询问:「请跟我来,先生们!」
在一段最新发布的视频里,波士顿动力展示了将机器狗与 LLM 集成的成果:「Spot 先生」戴着高礼帽,留着小胡子,有着大眼睛和英国口音,正带人参观公司的设施。
为了让 Spot 能够「开口」,波士顿动力公司使用 OpenAI 的 ChatGPT API 以及一些开源 LLM 来训练,然后为机器人配备了扬声器,添加了文本到语音转换的功能。
所以你能看到,在发出声音的同时,Spot 不停张开「嘴巴」,看起来像是真在说话:
波士顿动力公司首席软件工程师 Matt Klingensmith 表示,「Spot 先生」使用 VQA 模型来为图像添加字幕并回答有关图像的问题。
比如你可以提问:「Hey,Spot!你看到了什么?」
「Spot 先生」快速作答:「我看到了一块二维码的板子,还有一扇很大的窗户。」
LLM 所谓的「涌现行为」,使其能够执行既定训练之外的任务。正因如此,它们可以适用于各种应用。波士顿动力团队对此的探索是从今年夏天开始的,他们在机器人应用中使用 LLM 制作一些概念验证演示,这些想法又在一次内部黑客马拉松活动中加以扩展。
特别是,他们对 Spot 使用 LLM 作为自主工具的演示很感兴趣,团队的灵感来源于 LLM 在角色扮演、复制文化和细微差别、形成计划和长期保持连贯性方面的明显能力,以及近期发布的 VQA 模型(这些模型可以为图像添加标题并回答有关图像的简单问题)。
技术细节
接下来,让我们解密如何使用 Spot 的 SDK 打造这样一只「机器狗导游」。在最新的官方博客中,波士顿动力对「Spot 先生」背后的技术进行了详细介绍。
作为导游,Spot 的「四处走动」能力是现成的,Spot SDK 也允许用户实现对机器狗的自定义。「Spot 先生」会观察环境中的物体,使用 VQA 或字幕模型对其进行描述,然后使用 LLM 对这些描述进行详细说明。
团队在 Spot 收集的三维地图上标注了简短的描述,机器人会根据定位系统查找所在位置的描述,并将其与传感器提供的其他上下文一起输入 LLM。然后,LLM 将这些内容合成为命令,比如「说」、「问」、「去」或「标签」等。
下图是「Spot 先生」导游的建筑环境的三维地图,为 LLM 标注了位置:1 是演示实验室 / 阳台;2 是演示实验室 / 天桥;3 是博物馆 /old-spots;4 是博物馆 / 图集;5 是大厅;6 是外部 / 入口。
此外,LLM 还可以回答参观者的问题,并计划机器人下一步应该采取的行动。可以将 LLM 理解为一个即兴演员,在有了大致脚本之后,也能够临时填补空白。
这种组合的方式充分发挥了 LLM 的优势,而规避了 LLM 可能带来的风险:众所周知,LLM 的幻觉很严重,容易添加一些听起来似是而非的细节,幸好在这类参观过程中,并不太强调事实准确性。机器狗只需四处走动并谈论它所看到的事物,带来一些娱乐性、互动性和细微差别即可。
整体看上去,需要建立一些简单的硬件集成和几个协同运行的软件模型:
系统示意图。
硬件方面,首先是「音频」处理功能,Spot 既能向观众演示,又能听到参观团的提问和提示。团队用 3D 打印了一个 Respeaker V2 扬声器的防震支架,这是一个环形阵列麦克风,上面有 LED 指示灯,通过 USB 连接到 Spot 的 EAP 2 有效载荷上。
机器人的实际控制权被下放给一台机外电脑(台式电脑或笔记本电脑),该电脑通过 SDK 与 Spot 进行通信。
「Spot 先生」的硬件装备:1)Spot EAP 2;2)Respeaker V2;3)蓝牙扬声器;4)Spot Arm 和机械臂摄像头。
软件方面,波士顿动力团队使用了 OpenAI ChatGPT API,包括 gpt-3.5 和 gpt-4,还测试了一些较小的开源 LLM。
这让 Spot 具备了不错的对话能力,ChatGPT 对机器人及其「言语」的控制是通过精心的 prompt 工程实现的。受微软方法的启发,他们让 ChatGPT 看起来像是在「编写 python 脚本的下一行」,以此来 prompt ChatGPT。波士顿动力团队以注释的形式为 LLM 提供了英文文档,然后将 LLM 的输出当作 python 代码进行评估。LLM 可以访问自主 SDK、带有每个地点单行描述的旅游景点地图,并能说出短语或提出问题。
下面是「API 文档」的逐字提示:
# Spot Tour Guide API.
# Use the tour guide API to guide guests through a building using
# a robot. Tell the guests about what you see, and make up interesting stories
# about it. Personality: “You are a snarky, sarcastic robot who is unhelpful”.
# API:
# Causes the robot to travel to a location with the specified unique id, says the given phrase while walking.
# go_to (location_id, phrase)
# Example: when nearby_locations = ['home', 'spot_lab']
# go_to ("home", "Follow me to the docking area!")
# go_to can only be used on nearby locations.
# Causes the robot to say the given phrase.
# say ("phrase")
# Example: say ("Welcome to Boston Dynamics. I am Spot, a robot dog with a lot of heart! Let's begin the tour.")
# Causes the robot to ask a question, and then wait for a response.
# ask ("question")
# Example: ask ("Hi I'm spot. What is your name?")
在这之后,波士顿动力团队向 LLM 提供了一个有关其周围内容结构化信息的「状态字典」:
state={'curr_location_id': 'home', 'location_description': 'home base. There is a dock here.', 'nearby_locations': ['home', 'left_side', 'under_the_stairs'], 'spot_sees': 'a warehouse with yellow robots with lines on the floor.'}
最后发送一条 prompt,要求 LLM 执行某些操作,在本例中,是在 API 中输入操作之一:
# Enter exactly one action now. Remember to be concise:
团队得出的结论是,「切记简明扼要」这点非常重要,既能限制要执行的代码量,又能在机器人响应时保持可控的等待时间。
目前,OpenAI 已经提供了一种结构化的方式来指定 ChatGPT 调用的 API,所以在 prompt 本身中提供所有这些细节已经不是必需的了。
接下来,为了让 Spot 与观众和环境互动,波士顿动力集成了 VQA 和语音转文本软件。他们将 Spot 的机械臂摄像头和前视摄像头输入 BLIP-2,并在 VQA 模型或图像字幕模型中运行。大约每秒运行一次,结果直接输入 Prompt。
下图是动态字幕和 VQA 回复的示例:
为了让机器人「听见」,他们将麦克风数据分块输入 OpenAI 的 Whisper 程序,将其转换为英文文本。听到唤醒词「嘿,Spot!」后,系统再将该文本输入提示音。
ChatGPT 生成基于文本的回复之后,还需要通过文本转语音工具来运行这些回复,以便机器人能够真正与参观者对话。在尝试了从最基本的(espeak)到最前沿的研究(bark)等多种现成的文本转语音方法后,波士顿动力最终选择了 ElevenLabs。为了减少延迟,他们将文本以「短语」的形式并行流式传输给 TTS,然后串行播放生成的音频。
最后一项工作就是为「Spot 先生」创建一些默认的肢体语言。Spot 的 3.3 版本包括检测和跟踪机器人周围移动物体的功能,以提高机器人在人和车辆周围的安全性。波士顿动力恰好利用了这个系统使其猜测最近的人的位置,然后将手臂转向那个人。他们在生成的语音上使用了低通滤波器,并将其转化为机械臂轨迹,类似于木偶开口说话的形式。特别是在机械臂上添加服装和瞪大的眼睛之后,这种错觉得到了加强。
更多技术细节,可参考博客原文:
https://bostondynamics.com/blog/robots-that-can-chat/
相关推荐
- Google Chrome 100 Beta发布 用户代理字符串作用开始逐渐降低
-
GoogleChrome和MozillaFirefox都在迅速接近100版本,这有可能破坏一些错误识别浏览器版本的网站(可能导致访问不正常,这有点类似于众所周知的千年虫)。两种浏览器都在研究可能的...
- 如何在Chrome,Edge,Safari和Firefox中更改用户代理
-
无论您是SEO,营销人员还是Web开发人员,通常都可能需要更改浏览器的用户代理以测试其他内容。例如,您正在运行特定于MAC-OS的活动。要确定您的广告系列是否正常运行并且未针对Linux用户,更改浏览...
- Mozilla正在测试新的浏览器UserAgent
-
Mozilla最近发布了一个实验项目来测试3位数的UserAgent版本“Firefox/100.0”会不会让一些网站停止正常工作。浏览器UserAgent是一串字符串,里面包含了浏览器的软件信息,版...
- 爬虫与User-Agent
-
什么是User-Agent呢?User-Agent是一个特殊字符串头,被广泛用来标示浏览器客户端的信息,使得服务器能识别客户机使用的操作系统和版本,CPU类型,浏览器及版本,浏览器的渲染引擎,浏览器...
- 让你的浏览器充满魔性——User Agent Switche
-
对于前端人员,闲暇时就会研究各种插件,今天我就分享UserAgentSwitcher在Firefox和Chrome的使用情况。一、Firefox浏览器UserAgentSwitcher作为火...
- 亚马逊账号运营安全-浏览器指纹识别之User-Agent开篇
-
UA包含了一个约定的特征字符串。主要是面向受访问网络表明自己的操作系统,软件开发商,版本,应用类型等信息。这是一种主动暴露信息的方式。我们来看关于UA的简单语法定义:User-Agent:<p...
- 【每日学习】Python爬虫之伪装浏览器User-Agent
-
【主题】Python爬虫之伪装浏览器原理【分析】1.创建自定义请求对象的目的,对抗网站的反爬虫机制2.反爬虫机制1:判断用户是否是浏览器访问(User-Agent)3.对抗措施1:伪装浏览器进行访问【...
- 亚马逊账号运营安全-浏览器指纹识别之User-Agent二篇
-
大家好,上一篇亚马逊账号运营安全-浏览器指纹识别之User-Agent开篇为大家阐述了原理。下面是作者为大家整理的其他几个主流浏览器的UA配置。一下都是Windows1064X系统下整理。Chrom...
- 常见的爬虫UserAgent
-
通过前面的文章我们知道,UserAgent(用户代理)是HTTP请求的一部分,用于告诉服务器发起请求的客户端类型和属性等信息。同时,也了解了常见的UserAgent。...
- HTTP请求头之User-Agent
-
什么是User-AgentUser-Agent中文名为用户代理,简称UA,...
- 你想不到的浏览器流氓史!那些奇怪的User-Agent,是这么来的...
-
平时我们用chrome浏览器做开发测试。Chrome的Useragent字段怎么这么奇怪?...
- 谷歌宣布 Chrome 将逐步停止支持 User Agent
-
谷歌近日宣布将放弃对Chrome浏览器中用户代理字符串(User-AgentString)的支持。取而代之的是,Chrome将提供一个名为“客户端提示(ClientHints)”的新API...
- 数据采集-用户代理(useragent)
-
UserAgent分类:PC端的UserAgent。移动端UserAgent。使用UserAgent的必要性:在写python网络爬虫程序的时候,经常需要修改UserAgent,有很多原因,罗列几个如...
- 如何获取当前浏览器的useragent
-
有时候,我们需要得到浏览器的useragent,从而再进行后面的一系列判断,返回不同的值。网上有说,在浏览器地址栏输入:javascript:alert(navigator.userAgent)这种方...
- User Agent 解析:它是什么以及如何修改
-
什么是UserAgent?UserAgent,简称UA,是一个使服务器能够识别用户使用的浏览器类型、版本以及运行浏览器的操作系统等信息的字符串。它作为浏览器请求头部信息的一部分发送给服务器,以便服务...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- mybatis plus (70)
- scheduledtask (71)
- css滚动条 (60)
- java学生成绩管理系统 (59)
- 结构体数组 (69)
- databasemetadata (64)
- javastatic (68)
- jsp实用教程 (53)
- fontawesome (57)
- widget开发 (57)
- vb net教程 (62)
- hibernate 教程 (63)
- case语句 (57)
- svn连接 (74)
- directoryindex (69)
- session timeout (58)
- textbox换行 (67)
- extension_dir (64)
- linearlayout (58)
- vba高级教程 (75)
- iframe用法 (58)
- sqlparameter (59)
- trim函数 (59)
- flex布局 (63)
- contextloaderlistener (56)