OpenCV(36)——用分水岭算法实现图像的分割与提取
yuyutoo 2024-10-13 00:29 3 浏览 0 评论
图像分割
了解分水岭算法之前,我们需要了解什么是图像的分割。
在图像的处理过程中,经常需要从图像中将前景对象作为目标图像分割或者提取出来。例如,在视频监控中,观测到的是固定背景下的视频内容,而我们对背景本身并无兴趣,感兴趣的是背景中出现的车辆,行人或者其他对象。我们希望将这些对象从视频中提取出来,而忽略那些没有对象进入背景的视频内容。
分水岭算法
图像分割是图像处理过程中一种非常重要的操作。分水岭算法将图像形象地比喻为地理学上的地形表面,实现图像分割,该算法非常有用。
下面,博主对分水岭算法的相关内容做简单的介绍。(详细可以参考冈萨雷斯的《数字图像处理》一书)
任何一副灰度图像,都可以被看作是地理学上的地形表面,灰度值越高的区域可以被看成是山峰,灰度值越低的区域可以被看成是山谷。
如果我们向每个山谷中灌注不同颜色的水。那么随着水位的不断升高,不同山谷的水就汇聚到一起。在这个过程中,为了防止不同山谷的水交汇,我们需要在水流可能汇合的地方构建堤坝。该过程将图像分为两个不同的集合:集水盆地和分水岭线。我们构建的堤坝就是分水岭线,也即对原始图像的分割。这就是分水岭算法的原理。
不过,一般的图像都存在着噪声,采用分水岭算法时,会经常得到过度分割的结果。为了改善图像分割的效果,人们提出了基于掩摸的改进的分水岭算法。改进的分水岭算法允许用户将它认为是同一个分割区域的部分标注出来。这样,分水岭算法在处理时,就会将标注的部分处理为同一个分割区域。
如果对于该理论不怎么了解,可以使用软件PowerPoint中的“删除背景”功能进行观察配合理解。
waterShed函数
在OpenCV中,可以使用函数cv2.watershed()函数实现分水岭算法。不过,具体实现的过程,还需要借助形态学函数,距离变换函数cv2.distanceTransform(),cv2.connectedComponents()来完成图像分割。
形态学分割
在使用分水岭算法之前,我们需要对图像进行简单的形态学处理。一般情况下,我们都是使用形态学中的开运算,因为开运算是先腐蚀后膨胀的操作,能够去除图像内的噪声。
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("36.jpg")
k=np.ones((5,5),dtype=np.uint8)
e=cv2.erode(img,k)
result=cv2.subtract(img,e)
plt.subplot(131)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(132)
plt.imshow(e, cmap="gray")
plt.axis('off')
plt.subplot(133)
plt.imshow(result, cmap="gray")
plt.axis('off')
plt.show()
回顾一下,我们前面的开运算函数为cv2.erode(),这里我们首先经过开运算去除噪声。然后减法运算cv2.subtract()获取图像边界。运行之后,效果如下:
distanceTransform函数
当图像内的各个子图没有连接时,可以直接使用形态学的腐蚀操作确定前景对象,但是如果图像内的子图连接在一起时,就很难确定前景对象了。这个时候,就需要借助变换函数cv2.distanceTransform()方便地将前景对象提取出来。
cv2.distanceTransform()反应了各个像素点与背景(值为0的像素点)的距离关系。通常情况下:
1.如果前景对象的中心距离值为0的像素点距离较远,会得到一个较大的值。2.如果前景对象的边缘距离值为0的像素点较近,会得到一个较小的值。
下面,我们来使用该函数确定一副图像的前景,并观察效果。
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("36.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
k = np.ones((5, 5), dtype=np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, k, iterations=2)
distTransform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, fore = cv2.threshold(distTransform, 0.7 * distTransform.max(), 255, 0)
plt.subplot(131)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(132)
plt.imshow(distTransform, cmap="gray")
plt.axis('off')
plt.subplot(133)
plt.imshow(fore, cmap="gray")
plt.axis('off')
plt.show()
这里,我们使用cv2.morphologyEx函数进行开运算,同时使用cv2.distanceTransform得到距离图像,最后在通过cv2.threshold对距离图像进行阈值处理,确定前景。运行之后,效果如下:
确定未知区域
通过距离函数,我们获取到了图像的“中心”,也就是“确定前景”。为了方便后续的讲解,我们将确定前景称为F。
图像中有了确定前景F和确定背景B,剩下的区域就是未知区域UN了。这部分区域正是分水岭算法要进一步明确的区域。
针对一副图像0,通过以下关系能够得到未知区域UN:
未知区域UN=图像0-确定背景B-确定前景F
由上述公式变换得到:
未知区域UN=(图像0-确定背景B)-确定前景F
其中(图像0-确定背景B)就是我们开始的减法操作,通过形态学膨胀得到。也只需要将上面的代码添加4行并更改显示的代码内容:
bg=cv2.dilate(opening,k,iterations=3)
fore=np.uint8(fore)
un=cv2.subtract(bg,fore)
plt.subplot(221)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(222)
plt.imshow(bg, cmap="gray")
plt.axis('off')
plt.subplot(223)
plt.imshow(fore, cmap="gray")
plt.axis('off')
plt.subplot(224)
plt.imshow(un, cmap="gray")
plt.axis('off')
plt.show()
运行之后,效果如下:
左上为原图
右上为原图膨胀后得到的图像bg,其背景图像是确定背景B。前景图像是“原始图像0-确定背景B”
左下为确定前景图像fore
右下为未知区域图像UN
ConnectedComponents函数
明确了确定前景后,就可以对确定前景进行标注了。在OpenCV中,它提供了cv2.ConnectedComponents()函数进行标注。
该函数会将背景标注为0,将其他的对象使用从1开始的正整数标注。它只有一个参数8位单通道的待标注图像。
返回值有两个:retval为返回的标注数量,labels为标注的结果图像。
下面,我们来使用该函数进行标注。代码如下(同样更改上面bg下面代码就行):
bg = cv2.dilate(opening, k, iterations=3)
fore = np.uint8(fore)
ret, markets = cv2.connectedComponents(fore)
unknown=cv2.subtract(bg,fore)
markets=markets+1
markets[unknown==255]=0
plt.subplot(131)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.subplot(132)
plt.imshow(fore, cmap="gray")
plt.axis('off')
plt.subplot(133)
plt.imshow(markets, cmap="gray")
plt.axis('off')
plt.show()
修改上面fore = np.uint8(fore)的代码,并修改输出内容。运行之后,我们会得到原图,前景图像的中心点图像fore以及标注后的结果图像markets。效果如下:
实战分水岭算法
经过前文的介绍,我们了解了使用分水岭算法进行图像分割的基本步骤:
1.通过形态学开运算对原始图像0进行去噪2.通过腐蚀操作获取“确定背景B”。需要注意,这里得到“原始图像-确定背景”即可3.利用距离变换函数对原始图像进行运算,并对其进行阈值处理,得到“确定前景F”4.计算未知区域UN(UN=0-B-F)5.利用函数cv2.connectedComponents()对原始图像0进行标注6.对函数cv2.connectedComponents()的标注结果进行修正7.使用分水岭函数完成图像分割
完整代码如下:
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread("36.jpg")
plt.subplot(121)
plt.imshow(img, cmap="gray")
plt.axis('off')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
k = np.ones((5, 5), dtype=np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, k, iterations=2)
distTransform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, fore = cv2.threshold(distTransform, 0.2 * distTransform.max(), 255, 0)
bg = cv2.dilate(opening, k, iterations=3)
fore = np.uint8(fore)
ret, markets = cv2.connectedComponents(fore)
unknown = cv2.subtract(bg, fore)
markets = markets + 1
markets[unknown == 255] = 0
markets = cv2.watershed(img, markets)
img[markets == -1] = [255, 0, 0]
plt.subplot(122)
plt.imshow(img, cmap="gray")
plt.axis('off')
plt.show()
运行之后,我们就可以得到分割的图像:
当然,参数可以调整,可以看到大致的硬币被完整的分割出来了。
相关推荐
- YAML配置文件简介及使用(yaml 配置)
-
简介YAML是"YAMLAin'taMarkupLanguage"(YAML不是一种标记语言)的缩写。相比JSON格式的方便。...
- 教你如何解决最常见的58种网络故障排除方法
-
1.故障现象:网络适配器(网卡)设置与计算机资源有冲突。分析、排除:通过调整网卡资源中的IRQ和I/O值来避开与计算机其它资源的冲突。有些情况还需要通过设置主板的跳线来调整与其它资源的冲突。2.故障现...
- 一分钟带你了解服务器网卡(服务器网卡怎么用)
-
今天小编和大家聊一下服务器的网卡。什么是网卡?简单说网卡就是计算机与局域网互连的设备。计算机主要通过网卡接入网络。网卡又称为网络适配器或网络接口卡NIC(NetworkinterfaceCard)...
- linux文件之ssh配置文件的含义与作用
-
ssh远程登录命令是操作系统(包括linux和window系统)下常用的操作命令,可以帮助用户,远程登录服务器系统,查看,操作系统相关信息。linux系统对于ssh命令有专门保存其相关配置的目录和文件...
- Cilium 官方文档翻译 - IPAM(二)Kubernetes Host模式
-
KubernetesHostScopeciliumIPAM的kuberneteshost-scope模式通过选项ipam:kubernetes开启,将集群IP地址分配委托给每个独立的节点,并...
- 域名劫持跳转,域名劫持跳转的解决办法只需5步
-
简单来说,域名劫持就是把原本准备访问某网站的用户,在不知不觉中,劫持到仿冒的网站上,例如用户准备访问某家知名品牌的网上商店,黑客就可以通过域名劫持的手段,把其带到假的网上商店,同时收集用户的ID信息和...
- Linux 磁盘和文件系统管理(linux磁盘管理fdisk)
-
1检测并确认新硬盘...
- windows host文件怎么恢复?局域网访问全靠这些!
-
windowshost文件怎么恢复?windowshost文件是常用网址域名及其相应IP地址建立一个关联文件,通过这个host文件配置域名和IP的映射关系,以提高域名解析的速度,方便局域网用户使用...
- Nginx配置文件详解与优化建议(nginx 配置详解)
-
1、概述今天来详解一下Nginx的配置文件,以及给出一些配置建议,希望能对大家有所帮助。...
- Mac电脑hosts文件锁定,如何修改hosts文件权限
-
有时候我们需要修改hosts文件,但是网上很多教程都行不通,使用sudo命令也不行。其实有一个很简单的方法。打开终端命令行,使用如下命令即可:sudochflags-hvnoschg/etc/...
- windows电脑如何修改hosts文件?(windows 修改hosts文件)
-
先来简单说下电脑host的作用hosts文件的作用:hosts文件是一个用于储存计算机网络中各节点信息的计算机文件;作用是将一些常用的网址域名与其对应的IP地址建立一个关联“数据库”,当用户在浏览器中...
- Vigilante恶意软件行为怪异:修改Hosts文件以阻止受害者访问盗版网站
-
Sophos刚刚报道了一款名叫Vigilante的恶意软件,但其行为却让许多受害者感到不解。与其它专注于偷密码、搞破坏、或勒索赎金的恶意软件不同,Vigilante会通过修改Hosts文件...
- hosts文件无法修改几种现象和解决方法
-
第一种、hosts文件修改完不是直接保存而是弹出另存为窗口解决:1、右击hosts文件——属性——把“只读”前面勾去掉。第二种、打开hosts文件时提示“你没有权限打开该文件,请向文件的所有者或管理员...
- hosts文件位置在哪里,教你hosts文件位置在哪里
-
Hosts是一个没有扩展名的系统文件,其基本作用就是将一些常用的网址域名与其对应的IP地址建立一个关联"数据库",当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的I...
你 发表评论:
欢迎- 一周热门
-
-
前端面试:iframe 的优缺点? iframe有那些缺点
-
带斜线的表头制作好了,如何填充内容?这几种方法你更喜欢哪个?
-
漫学笔记之PHP.ini常用的配置信息
-
其实模版网站在开发工作中很重要,推荐几个参考站给大家
-
推荐7个模板代码和其他游戏源码下载的网址
-
[干货] JAVA - JVM - 2 内存两分 [干货]+java+-+jvm+-+2+内存两分吗
-
正在学习使用python搭建自动化测试框架?这个系统包你可能会用到
-
织梦(Dedecms)建站教程 织梦建站详细步骤
-
2024PHP在线客服系统源码+完全开源 带详细搭建教程
-
【开源分享】2024在线客服系统PHP源码(安装教程+全新UI)
-
- 最近发表
- 标签列表
-
- mybatis plus (70)
- scheduledtask (71)
- css滚动条 (60)
- java学生成绩管理系统 (59)
- 结构体数组 (69)
- databasemetadata (64)
- javastatic (68)
- jsp实用教程 (53)
- fontawesome (57)
- widget开发 (57)
- vb net教程 (62)
- hibernate 教程 (63)
- case语句 (57)
- svn连接 (74)
- directoryindex (69)
- session timeout (58)
- textbox换行 (67)
- extension_dir (64)
- linearlayout (58)
- vba高级教程 (75)
- iframe用法 (58)
- sqlparameter (59)
- trim函数 (59)
- flex布局 (63)
- contextloaderlistener (56)