百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

PostgreSQL从入门到精通教程 - 第45讲:poc-tpcc测试

yuyutoo 2024-10-12 01:26 5 浏览 0 评论


PostgreSQL从小白到专家,是从入门逐渐能力提升的一个系列教程,内容包括对PG基础的认知、包括安装使用、包括角色权限、包括维护管理、、等内容,希望对热爱PG、学习PG的同学们有帮助,欢迎持续关注CUUG PG技术大讲堂。


第45讲:POC-TPCC测试


PostgreSQL第45讲:3月2日(周六)19:30,钉钉群(35822460)& 视频号(数据库老陈)直播

内容1:TPC-C介绍

内容2:TPC-C测试部署

内容3:TPC-C报告


TPC背景介绍

TPC组织:

事务处理性能测试委员会TPC(Transaction process performance Council)是一个专门负责制定计算机事务处理能力测试标准并监督其执行的组织,其总部位于美国,针对数据库不同的使用场景TPC组织发布了多项测试标准,其中被业界广泛使用的有TPC-C 、TPC-E,TPC-H和TPC-DS,前两者应用到OLTP,后两者应用到OLAP场景。

OLTP与OLAP区别

联机事务处理OLTP(on-line transaction processing) 主要是执行基本日常的事务处理,比如数据库记录的增删查改。比如在银行的一笔交易记录,就是一个典型的事务。高并发,高性能,且满足事务的ACID特性。

联机分析处理OLAP(On-Line Analytical Processing) 是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。典型的应用就是复杂的动态的报表系统。对实时性要求不高,数据量大

测试标准-OLTP

OLTP测试模型一直是TPC组织的重点测试标准,TPC-C测试模拟了一个比较复杂的OLTP应用环境, 是一个在线零售公司,此公司对10W种商品进行销售,TPC-E是对TPC-C升级版本,但是目前POC选型时普通使用的仍然是TPC-C标准,先简单介绍两个标准的差异


TPC-C介绍

TPC-C业务数据模型:

tpc-c模拟的是一个在线零售公司,假如以一个仓库为例,仓库对10W种商品进行销售,具备针对用户进行水平扩展的能力,即建立更多的仓库。

每个仓库负责10个区域,每个区域有单独的订单系统,每个区域管理3000个顾客,因此一个仓库负责3W个客户。树状图如下图

TPC-C业务数据模型:

TPC-C 业务涉及到的9张表以及ER图介绍:

1)ITEM 商品信息表:10w条商品信息,保持不变

2)warehouse 仓库表:按需库容,比如上图表示有W个仓库,则有W条记录

3)Stock 库存表:每个仓库有10W条商品的库存信息,因此总数目为W*10w

4)district区域表: 每个仓库管理10个区域,因此有W*10条记录

5) custoer客户表:每个仓库负责10个区域,每个区域管理3000个客户,因此客户数为W*3w

6 ) Order订单表:每次客户下单会生成一条记录,会持续增长,不删除,初始化为每个客户一条订单,因此初始值为W*3w

7) New-Order新订单表:没有发货的订单,发货后即删除,初始值为每个仓库9000条记录,因此为W*9000

8)order-line订单明细表:每个订单会购买5-15件商品(平均为10),对于每件商品都要记录到这里,因此它的数目约为Order的10倍,会持续增长,不删除,初始值为W*30w

9) history表:历史信息表,没有主键,不需要查询,每次支付的时候生成一条记录,初始值为W*3w条

TPC-C业务数据模型:


TPC-C测试部署

1、安装JAVA (root)

gzip -d jdk-8u40-linux-x64.gz

tar –vxf jdk-8u40-linux-x64 -C /usr/local

2、安装ant (root)

unzip apache-ant-1.9.15-bin.zip

mv apache-ant-1.9.15 /usr/local/

3、配置pg环境变量

export JAVA_HOME=/usr/local/jdk1.8.0_40

export PATH=$JAVA_HOME/bin:$PATH:/usr/local/apache-ant-1.9.15/bin/

export CLASSPATH=.:$JAVA_HOME/lib:$JAVA_HOME/lib:/usr/local/apache-ant-1.9.15/lib/ant-launcher.jar

4、解压安装包benchmarksql (pg)

unzip benchmarksql-5.0.zip

cd benchmarksql-5.0/

ant #执行ant命令

5、编辑PG相关运行参数

cd run/

vim props.pg

props.pg文件内容:

db=postgres

driver=org.postgresql.Driver

conn=jdbc:postgresql://localhost:1922/tpcc

user=tpcc

password=123456

//warehouses与后面生成数据时指定的warehouses值要一致,根据客户实际的需求设置

warehouses=10

//并发客户端

terminals=10

runTxnsPerTerminal=0

//运行时长,单位为分钟

runMins=3

limitTxnsPerMin=10000

//Set to true to run in 4.x compatible mode. Set to false to use the

//entire configured database evenly.

terminalWarehouseFixed=true

//The following five values must add up to 100

//The default percentages of 45, 43, 4, 4 & 4 match the TPC-C spec,测试结果要达到下面每张表的交易要求才算通过

newOrderWeight=45

paymentWeight=43

orderStatusWeight=4

deliveryWeight=4

stockLevelWeight=4

6、PG数据库上创建tpcc数据库以及tpcc用户,密码为123456

7、建立测试库,并加载数据

./runDatabaseBuild.sh props.pg

8、运行基准测试

./runBenchmark.sh props.pg

测试结果

07:55:13,970 [Thread-1] INFO jTPCC : Term-00,

07:55:13,970 [Thread-1] INFO jTPCC : Term-00,

07:55:13,970 [Thread-1] INFO jTPCC : Term-00, Measured tpmC (NewOrders) = 3814.05

07:55:13,970 [Thread-1] INFO jTPCC : Term-00, Measured tpmTOTAL = 8499.38

07:55:13,970 [Thread-1] INFO jTPCC : Term-00, Session Start = 2022-01-04 07:52:13

07:55:13,970 [Thread-1] INFO jTPCC : Term-00, Session End = 2022-01-04 07:55:13

07:55:13,970 [Thread-1] INFO jTPCC : Term-00, Transaction Count = 25499

3814.05 TpmC //每分钟处理完成的事务数,该值=第一次统计结果 new-order成功事务数/总运行时间(分钟)

生成html测试结果

1、安装R命令

yum install epel-release

yum install R

2、产生html报告

./generateReport.sh my_result_2022-01-17_094510

3、报告指标

New-Order :新订单

Payment:支付

Order-Status:订单查询

Delivery:发货

Stock-Level :库存

4、html报告(5个仓库)

[transaction percentage]

New-Orders:45.112%(>=45.0%) [OK]

Payment: 42.681% (>=43.0%) [NG]

Order-Status: 4.166% (>= 4.0%) [OK]

Delivery: 4.017% (>= 4.0%) [OK]

Stock-Level: 4.024% (>= 4.0%) [OK]

[response time (at least 90% passed)] //响应耗时指标必须超过90%通过才行

New-Order: 99.481% [OK]

Payment: 99.4% [OK]

Order-Status: 99.97% [OK]

Delivery: 99.99% [OK]

Stock-Level: 99.72% [OK]

Overall tpmC: 4324.00

Overall tpmTotal: 9585.00

4、html报告(10个仓库)

[transaction percentage]

New-Orders:44.687%(<=45.0%) [NG]

Payment: 43.293% (>=43.0%) [OK]

Order-Status: 3.904% (<= 4.0%) [NG]

Delivery: 4.204% (>= 4.0%) [OK]

Stock-Level: 3.912% (<= 4.0%) [NG]

[response time (at least 90% passed)] //响应耗时指标必须超过90%通过才行

New-Order: 99.06% [OK]

Payment: 99.01% [OK]

Order-Status: 99.62%[OK]

Delivery: 99.93% [OK]

Stock-Level: 99.83% [OK]

Overall tpmC: 3975.33

Overall tpmTotal: 8896.00

数据一致性验证

6条验证数据一致性的sql,通过验证仓库和区域收入是否相等来判断数据是否一致,预期以下6条sql结果都为0

第一条:

SELECT distinct w_ytd - ytd_sum

FROM bmsql_warehouse LEFT JOIN

(SELECT d_w_id, SUM(d_ytd) AS ytd_sum

FROM bmsql_district

GROUP BY d_w_id) d

ON w_id = d_w_id;

第二条:

select distinct * from

(SELECT (D_NEXT_O_ID - 1 - max_o_id) as id

FROM bmsql_district LEFT JOIN

(SELECT o_w_id, o_d_id, MAX(o_id) AS max_o_id

FROM bmsql_oorder

GROUP BY o_w_id, o_d_id) o

ON d_w_id = o_w_id AND d_id = o_d_id

ORDER BY d_w_id, d_id) tmp ;

第三条:

select distinct * from

(SELECT D_NEXT_O_ID - 1 - max_o_id

FROM bmsql_district LEFT JOIN

(SELECT no_w_id, no_d_id, MAX(no_o_id) AS max_o_id

FROM bmsql_NEW_order

GROUP BY no_w_id, no_d_id)

no_w_id ON d_w_id = no_w_id

AND d_id = no_d_id

ORDER BY d_w_id, d_id) as tmp;

第四条:

select distinct (count(no_o_id)-(max(no_o_id)-min(no_o_id)+1)) as diff

from bmsql_NEW_order

group by no_w_id,no_d_id;

第五条:

select distinct * from

(SELECT sum_cnt - count_id

FROM

( SELECT o_w_id, o_d_id, SUM(o_ol_cnt) as sum_cnt

FROM bmsql_oorder

GROUP BY o_w_id, o_d_id ) o LEFT JOIN

( SELECT ol_w_id, ol_d_id, COUNT(ol_o_id) count_id FROM bmsql_order_line

GROUP BY ol_w_id, ol_d_id )

ol_w_id ON o_w_id =ol_w_id AND o_d_id = ol_d_id) tmp;

第六条:

SELECT distinct sum_ytd - w_ytd

FROM

( SELECT d_w_id, SUM(d_ytd) AS sum_ytd

FROM bmsql_district

GROUP BY d_w_id) d

LEFT JOIN bmsql_warehouse w ON d_w_id = w_id;


CUUG PostgreSQL技术大讲堂系列公开课第45讲-POC-TPCC测试的内容,往期视频及文档,请联系CUUG。

相关推荐

Mysql和Oracle实现序列自增(oracle创建序列的sql)

Mysql和Oracle实现序列自增/*ORACLE设置自增序列oracle本身不支持如mysql的AUTO_INCREMENT自增方式,我们可以用序列加触发器的形式实现,假如有一个表T_WORKM...

关于Oracle数据库12c 新特性总结(oracle数据库19c与12c)

概述今天主要简单介绍一下Oracle12c的一些新特性,仅供参考。参考:http://docs.oracle.com/database/121/NEWFT/chapter12102.htm#NEWFT...

MySQL CREATE TABLE 简单设计模板交流

推荐用MySQL8.0(2018/4/19发布,开发者说同比5.7快2倍)或同类型以上版本....

mysql学习9:创建数据库(mysql5.5创建数据库)

前言:我也是在学习过程中,不对的地方请谅解showdatabases;#查看数据库表createdatabasename...

MySQL面试题-CREATE TABLE AS 与CREATE TABLE LIKE的区别

执行"CREATETABLE新表ASSELECT*FROM原表;"后,新表与原表的字段一致,但主键、索引不会复制到新表,会把原表的表记录复制到新表。...

Nike Dunk High Volt 和 Bright Spruce 预计将于 12 月推出

在街上看到的PandaDunk的超载可能让一些球鞋迷们望而却步,但Dunk的浪潮仍然强劲,看不到尽头。我们看到的很多版本都是为女性和儿童制作的,这种新配色为后者引入了一种令人耳目一新的新选择,而...

美国多功能舰载雷达及美国海军舰载多功能雷达系统技术介绍

多功能雷达AN/SPY-1的特性和技术能力,该雷达已经在美国海军服役了30多年,其修改-AN/SPY-1A、AN/SPY-1B(V)、AN/SPY-1D、AN/SPY-1D(V),以及雷神...

汽车音响怎么玩,安装技术知识(汽车音响怎么玩,安装技术知识视频)

全面分析汽车音响使用或安装技术常识一:主机是大多数人最熟习的音响器材,有关主机的各种性能及规格,也是耳熟能详的事,以下是一些在使用或安装时,比较需要注意的事项:LOUDNESS:几年前的主机,此按...

【推荐】ProAc Response系列扬声器逐个看

有考牌(公认好声音)扬声器之称ProAcTablette小音箱,相信不少音响发烧友都曾经,或者现在依然持有,正当大家逐渐掌握Tablette的摆位设定与器材配搭之后,下一步就会考虑升级至表现更全...

#本站首晒# 漂洋过海来看你 — BLACK&amp;DECKER 百得 BDH2000L无绳吸尘器 开箱

作者:初吻给了烟sco混迹张大妈时日不短了,手没少剁。家里有了汪星人,吸尘器使用频率相当高,偶尔零星打扫用卧式的实在麻烦(汪星人:你这分明是找借口,我掉毛是满屋子都有,铲屎君都是用卧式满屋子吸的,你...

专题|一个品牌一件产品(英国篇)之Quested(罗杰之声)

Quested(罗杰之声)代表产品:Q212FS品牌介绍Quested(罗杰之声)是录音监听领域的传奇品牌,由英国录音师RogerQuested于1985年创立。在成立Quested之前,Roger...

常用半导体中英对照表(建议收藏)(半导体英文术语)

作为一个源自国外的技术,半导体产业涉及许多英文术语。加之从业者很多都有海外经历或习惯于用英文表达相关技术和工艺节点,这就导致许多英文术语翻译成中文后,仍有不少人照应不上或不知如何翻译。为此,我们整理了...

Fyne Audio F502SP 2.5音路低音反射式落地音箱评测

FyneAudio的F500系列,有新成员了!不过,新成员不是新的款式,却是根据原有款式提出特别版。特别版产品在原有型号后标注了SP字样,意思是SpecialProduction。Fyne一共推出...

有哪些免费的内存数据库(In-Memory Database)

以下是一些常见的免费的内存数据库:1.Redis:Redis是一个开源的内存数据库,它支持多种数据结构,如字符串、哈希表、列表、集合和有序集合。Redis提供了快速的读写操作,并且支持持久化数据到磁...

RazorSQL Mac版(SQL数据库查询工具)

RazorSQLMac特别版是一款看似简单实则功能非常出色的SQL数据库查询、编辑、浏览和管理工具。RazorSQLformac特别版可以帮你管理多个数据库,支持主流的30多种数据库,包括Ca...

取消回复欢迎 发表评论: