搞懂8大排序算法,这一篇文章就够了
yuyutoo 2024-10-12 01:08 3 浏览 0 评论
插入排序
- 基本思想:每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。
- 算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。
- 代码:
public static void insertionSort(int[] array){
int tmp;
for(int i=1;i<array.length;i++){
tmp = array[i]; //将当前位置的数给tmp
int j = i;
for(;j>0&&array[j-1]>tmp;j--){
/* * 往右移,腾出左边的位置, * array[j-1]>tmp:大于号是升序排列,小于号是降序排列 */
array[j] = array[j-1];
}
//将当前位置的数插入到合适的位置
array[j] = tmp;
}
}
冒泡排序
- 基本思想:持续比较相邻的元素。如果第一个比第二个大,就交换他们两个。直到没有任何一对数字需要比较。
- 冒泡排序最好的时间复杂度为O(n)。冒泡排序的最坏时间复杂度为O(n2)。因此冒泡排序总的平均时间复杂度为O(n2)。
- 算法适用于少量数据的排序,是稳定的排序方法。
- 代码:
public static void bubbleSort(int[] array){
int tmp;
boolean flag = false; //设置是否发生交换的标志
for(int i = array.length-1;i >= 0;i--){
for(int j=0;j<i;j++){ //每一轮都找到一个最大的数放在右边
if(array[j]>array[j+1]){
tmp = array[j];
array[j] = array[j+1];
array[j+1] = tmp;
flag = true; //发生了交换
}
}
if(!flag) break; //这一轮循环没有发生交换,说明排序已经完成,退出循环
}
}
选择排序
- 基本思想:每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。
- 选择排序是不稳定的排序方法。时间复杂度 O(n^2)。
- 代码:
public static void selectSort(int[] array){
for(int i = 0;i<array.length-1;i++){
int min = array[i];
int minindex = i;
for(int j = i;j<array.length;j++){
if(array[j]<min){ //选择当前最小的数
min = array[j];
minindex = j;
}
}
if(i != minindex){ //若i不是当前元素最小的,则和找到的那个元素交换
array[minindex] = array[i];
array[i] = min;
}
}
}
希尔排序
- 基本思想:先取一个小于n的整数d1作为第一个增量,把文件的全部记录分组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-1…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。
- 在使用增量dk的一趟排序之后,对于每一个i,我们都有a[i]<=a[i+dk],即所有相隔dk的元素都被排序。
- 希尔排序不稳定,时间复杂度 平均时间 O(nlogn) 最差时间O(n^2)
- 代码:
public static void shellSort(int[] array){
int j;
for(int gap = array.length/2; gap>0; gap /= 2){
//定义一个增长序列,即分割数组的增量,d1=N/2 dk=(d(k-1))/2
for(int i = gap; i<array.length;i++){
int tmp = array[i];
for( j =i; j>=gap&&tmp<array[j-gap]; j -= gap){
//将相距为Dk的元素进行排序
array[j] = array[j-gap];
}
array[j] = tmp;
}
}
}
堆排序
- 预备知识:
- 二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树)。 二叉堆有两种:最大堆和最小堆。 大根堆:父结点的键值总是大于或等于任何一个子节点的键值; 小根堆:父结点的键值总是小于或等于任何一个子节点的键值。 二叉堆一般用数组来表示。例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2。因此,第0个位置的子节点在1和2,1的子节点在3和4。以此类推。这种存储方式便於寻找父节点和子节点。 例如初始要排序的数组为:49, 38, 65, 97, 76, 13, 27, 49 构造成大根堆之后的数组为:97 76 65 49 49 13 27 38 实际树形结构如图(最大堆):
- 堆排序基本思想:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
- 堆排序是一种选择排序,其时间复杂度为O(nlogn)。堆排序是不稳定的
- 代码:
/* * 堆排序 * 调整最大堆,交换根元素和最后一个元素。 * 参数说明: * a -- 待排序的数组 */
public static void heapSort(int[] a) {
int n = a.length;
int i,tmp;
// 从(n/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个(最大)二叉堆。
for (i = n / 2 - 1; i >= 0; i--)
maxHeapDown(a, i, n-1);
// 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
for (i = n - 1; i > 0; i--) {
// 交换a[0]和a[i]。交换后,a[i]是a[0...i]中最大的。
tmp = a[0];
a[0] = a[i];
a[i] = tmp;
// 调整a[0...i-1],使得a[0...i-1]仍然是一个最大堆。
// 即,保证a[i-1]是a[0...i-1]中的最大值。
maxHeapDown(a, 0, i-1);
}
}
/* * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。 * 其中,N为数组下标索引值,如数组中第1个数对应的N为0。 * * 参数说明: * a -- 待排序的数组 * start -- 被下调节点的起始位置(一般为0,表示从第1个开始) * end -- 截至范围(一般为数组中最后一个元素的索引) */
public static void maxHeapDown(int[] a, int start, int end) {
int c = start; // 当前(current)节点的位置
int l = 2*c + 1; // 左(left)孩子的位置
int tmp = a[c]; // 当前(current)节点的大小
for (; l <= end; c=l,l=2*l+1) {
// "l"是左孩子,"l+1"是右孩子
if ( l < end && a[l] < a[l+1])
l++; // 左右两孩子中选择较大者,即m_heap[l+1]
if (tmp >= a[l])
break; // 调整结束
else { // 交换值
a[c] = a[l];
a[l]= tmp;
}
}
}
归并排序
- 归并排序的原理:
- 将待排序的数组分成前后两个部分,再递归的将前半部分数据和后半部分的数据各自归并排序,得到的两部分数据,然后使用merge合并算法(算法见代码)将两部分算法合并到一起。 例如:如果N=1;那么只有一个数据要排序,N=2,只需要调用merge函数将前后合并,N=4,........... 也就是将一个很多数据的数组分成前后两部分,然后不断递归归并排序,再合并,最后返回有序的数组。
- 归并排序的时间复杂度:
- 归并排序的最好、最坏和平均时间复杂度都是O(nlogn),而空间复杂度是O(n),比较次数介于(nlogn)/2和(nlogn)-n+1,赋值操作的次数是(2nlogn)。因此可以看出,归并排序算法比较占用内存,但却是效率高且稳定的排序算法。
- 代码:
public class MergeSort {
private static void mergeSort(int[] array,int[] tmp,int left,int right){
if(left<right){
int center = ( left + right ) / 2;//取数组的中点
mergeSort(array,tmp,left,center);//归并排序数组的前半部分
mergeSort(array,tmp,center+1,right);//归并排序数组的后半部分
merge(array,tmp,left,center+1,right);//将数组的前后半部分合并
}
}
/* * 超简单的合并函数 */
private static void merge(int[] array, int[] tmp, int leftPos, int rightPos, int rightEnd) {
// TODO Auto-generated method stub
int leftEnd = rightPos - 1;
int tmpPos = leftPos;
int numElements = rightEnd - leftPos + 1;
while(leftPos <= leftEnd && rightPos <= rightEnd){
if(array[leftPos]<=array[rightPos]){
tmp[tmpPos++] = array[leftPos++];
}else{
tmp[tmpPos++] = array[rightPos++];
}
}
while(leftPos <= leftEnd){
tmp[tmpPos++] = array[leftPos++];
}
while(rightPos <= rightEnd){
tmp[tmpPos++] = array[rightPos++];
}
for(int i=0;i<numElements;i++,rightEnd--){
array[rightEnd] = tmp[rightEnd];
}
}
public static void mergeSort(int[] array){
int[] tmp = new int[array.length];//声明一个用来合并的数组
mergeSort(array,tmp,0,array.length-1);//调用排序函数,传入数字的起点和终点
}
}
快速排序
- 快速排序原理:
- 如果数组S中元素是0或者1,则返回;
- 区数组S中任一元素v,称之为枢纽元;
- 将S-{v}(S中剩余的元素)划分成连个不相交的集合:S1={S-{v}|x<=v}和S2={S-{v}|x>=v};
- 返回{quicksort(s1)}后跟v,继而返回{quicksort(S2)}。
- 选取枢纽元(三数中值分割法)
- 一般的做法是使用左端、右端和中心位置上的三个元素的中值作为基元。 分割策略: 在分割阶段吧所有小元素移到数组的左边,大元素移到数组右边。,大小是相对于枢纽元素而言的。 当i在j的左边时,将i右移,移过哪些小于枢纽元的元素,并将j左移,已过那些大于枢纽元的元素,当i和j停止时,i指向一个大元素,而j指向一个小元素,如果i在j的左边,那么将这两个元素交换,其效果是把一个大元素推向右边,而把小元素推向左边。
- 速排序平均时间复杂度为O(nlogn),最坏情况为O(n^2),n越大,速度越快。不是稳定的排序算法。
- 代码:
/* * 快速排序 * 两个方向,左边的i下标一直往右走,当a[i] <= a[center_index], * 其中center_index是中枢元素的数组下标,而右边的j下标一直往左走,当a[j] > a[center_index] * 如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j * 交换a[j]和a[center_index],完成一趟快速排序 * 枢轴采用三数中值分割法可以优化 */
//递归快速排序
public static void quickSort(int a[]){
qSort(a, 0, a.length - 1);
}
//递归排序,利用两路划分
public static void qSort(int a[],int low,int high){
int pivot = 0;
if(low < high){
//将数组一分为二
pivot = partition(a,low,high);
//对第一部分进行递归排序
qSort(a,low,pivot);
//对第二部分进行递归排序
qSort(a,pivot + 1,high);
}
}
//partition函数,实现三数中值分割法
public static int partition(int a[],int low,int high){
int pivotkey = a[low]; //选取第一个元素为枢轴记录
while(low < high){
//将比枢轴记录小的交换到低端
while(low < high && a[high] >= pivotkey){
high--;
}
//采用替换而不是交换的方式操作
a[low] = a[high];
//将比枢轴记录大的交换到高端
while(low < high && a[low] <= pivotkey){
low++;
}
a[high] = a[low];
}
//枢纽所在位置赋值
a[low] = pivotkey;
//返回枢纽所在的位置
return low;
}
桶式排序
- 桶式排序不再是一种基于比较的排序方法,它是一种比较巧妙的排序方式,但这种排序方式需要待排序的序列满足以下两个特征: 待排序列所有的值处于一个可枚举的范围之类; 待排序列所在的这个可枚举的范围不应该太大,否则排序开销太大。
- 排序的具体步骤如下:
- (1)对于这个可枚举范围构建一个buckets数组,用于记录“落入”每个桶中元素的个数;
- (2)将(1)中得到的buckets数组重新进行计算,按如下公式重新计算:
- buckets[i] = buckets[i] +buckets[i-1] (其中1<=i<buckets.length);
- 桶式排序是一种非常优秀的排序算法,时间效率极高,它只要通过2轮遍历:第1轮遍历待排数据,统计每个待排数据“落入”各桶中的个数,第2轮遍历buckets用于重新计算buckets中元素的值,2轮遍历后就可以得到每个待排数据在有序序列中的位置,然后将各个数据项依次放入指定位置即可。
- 桶式排序的空间开销较大,它需要两个数组,第1个buckets数组用于记录“落入”各桶中元素的个数,进而保存各元素在有序序列中的位置,第2个数组用于缓存待排数据.
- 桶式排序是稳定的。如果待排序数据的范围在0~k之间,那么它的时间复杂度是O(k+n)的.
- 但是它的限制多,比如它只能排整形数组。而且当k较大,而数组长度n较小,即k>>n时,辅助数组C[k+1]的空间消耗较大。当数组为整形,且k和n接近时, 可以用此方法排序。
- 代码实现:
//min的值为0,max的值为待排序数组中最大值+1
public static void bucketSort(int[] data, int min, int max) {
// 缓存数组
int[] tmp = new int[data.length];
// buckets用于记录待排序元素的信息
// buckets数组定义了max-min个桶
int[] buckets = new int[max - min];
// 计算每个元素在序列出现的次数
for (int i = 0; i < data.length; i++) {
buckets[data[i] - min]++;
}
// 计算“落入”各桶内的元素在有序序列中的位置
for (int i = 1; i < max - min; i++) {
buckets[i] = buckets[i] + buckets[i - 1];
}
// 将data中的元素完全复制到tmp数组中
System.arraycopy(data, 0, tmp, 0, data.length);
// 根据buckets数组中的信息将待排序列的各元素放入相应位置
for (int k = data.length - 1; k >= 0; k--) {
data[--buckets[tmp[k] - min]] = tmp[k];
}
}
总结
- 下面是一个总的表格,大致总结了我们常见的所有的排序算法的特点。
- 性能测试
相关推荐
- 如何在HTML中使用JavaScript:从基础到高级的全面指南!
-
“这里是云端源想IT,帮你...
- 推荐9个Github上热门的CSS开源框架
-
大家好,我是Echa。...
- 硬核!知网首篇被引过万的论文讲了啥?作者什么来头?
-
整理|袁小华近日,知网首篇被引量破万的中文论文及其作者备受关注。知网中心网站数据显示,截至2021年7月23日,由华南师范大学教授温忠麟等人发表在《心理学报》2004年05期上的学术论文“中介效应检验...
- 为什么我推荐使用JSX开发Vue3_为什么用vue不用jquery
-
在很长的一段时间中,Vue官方都以简单上手作为其推广的重点。这确实给Vue带来了非常大的用户量,尤其是最追求需求开发效率,往往不那么在意工程代码质量的国内中小企业中,Vue占据的份额极速增长...
-
- 【干货】一文详解html和css,前端开发需要哪些技术?
-
网站开发简介...
-
2025-02-20 18:34 yuyutoo
- 分享几个css实用技巧_cssli
-
本篇将介绍几个css小技巧,目录如下:自定义引用标签的符号重置所有标签样式...
- 如何在浏览器中运行 .NET_怎么用浏览器运行代码
-
概述:...
- 前端-干货分享:更牛逼的CSS管理方法-层(CSS Layers)
-
使用CSS最困难的部分之一是处理CSS的权重值,它可以决定到底哪条规则会最终被应用,尤其是如果你想在Bootstrap这样的框架中覆盖其已有样式,更加显得麻烦。不过随着CSS层的引入,这一...
-
- HTML 基础标签库_html标签基本结构
-
HTML标题HTML标题(Heading)是通过-...
-
2025-02-20 18:34 yuyutoo
- 前端css面试20道常见考题_高级前端css面试题
-
1.请解释一下CSS3的flexbox(弹性盒布局模型),以及适用场景?display:flex;在父元素设置,子元素受弹性盒影响,默认排成一行,如果超出一行,按比例压缩flex:1;子元素设置...
- vue引入外部js文件并使用_vue3 引入外部js
-
要在Vue中引入外部的JavaScript文件,可以使用以下几种方法:1.使用``标签引入外部的JavaScript文件。在Vue的HTML模板中,可以直接使用``标签来引入外部的JavaScrip...
- 网页设计得懂css的规范_html+css网页设计
-
在初级的前端工作人员,刚入职的时候,可能在学习前端技术,写代码不是否那么的规范,而在工作中,命名的规范的尤为重要,它直接与你的代码质量挂钩。网上也受很多,但比较杂乱,在加上每年的命名都会发生一变化。...
- Google在Chrome中引入HTML 5.1标记
-
虽然负责制定Web标准的WorldWideWebConsortium(W3C)尚未宣布HTML5正式推荐规格,而Google已经迁移到了HTML5.1。即将发布的Chrome38将引入H...
- HTML DOM 引用( ) 对象_html中如何引用js
-
引用对象引用对象定义了一个同内联元素的HTML引用。标签定义短的引用。元素经常在引用的内容周围添加引号。HTML文档中的每一个标签,都会创建一个引用对象。...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- mybatis plus (70)
- scheduledtask (71)
- css滚动条 (60)
- java学生成绩管理系统 (59)
- 结构体数组 (69)
- databasemetadata (64)
- javastatic (68)
- jsp实用教程 (53)
- fontawesome (57)
- widget开发 (57)
- vb net教程 (62)
- hibernate 教程 (63)
- case语句 (57)
- svn连接 (74)
- directoryindex (69)
- session timeout (58)
- textbox换行 (67)
- extension_dir (64)
- linearlayout (58)
- vba高级教程 (75)
- iframe用法 (58)
- sqlparameter (59)
- trim函数 (59)
- flex布局 (63)
- contextloaderlistener (56)