从基本原理到梯度下降算法:零基础也能看懂的神经网络教程
yuyutoo 2024-10-12 00:58 3 浏览 0 评论
晓查 发自 凹非寺
量子位 报道 | 公众号 QbitAI
“我在网上看到过很多神经网络的实现方法,但这一篇是最简单、最清晰的。”
一位来自普林斯顿的华人小哥Victor Zhou,写了篇神经网络入门教程,在线代码网站Repl.it联合创始人Amjad Masad看完以后,给予如是评价。
这篇教程发布仅天时间,就在Hacker News论坛上收获了574赞。程序员们纷纷夸赞这篇文章的代码写得很好,变量名很规范,让人一目了然。
下面就让我们一起从零开始学习神经网络吧。
实现方法
搭建基本模块——神经元
在说神经网络之前,我们讨论一下神经元(Neurons),它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。比如一个2输入神经元的例子:
在这个神经元中,输入总共经历了3步数学运算,
先将两个输入乘以权重(weight):
x1→x1 × w1
x2→x2 × w2
把两个结果想加,再加上一个偏置(bias):
(x1 × w1)+(x2 × w2)+ b
最后将它们经过激活函数(activation function)处理得到输出:
y = f(x1 × w1 + x2 × w2 + b)
激活函数的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是sigmoid函数:
sigmoid函数的输出介于0和1,我们可以理解为它把 (?∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。
举个例子,上面神经元里的权重和偏置取如下数值:
w=[0,1]
b = 4
w=[0,1]是w1=0、w2=1的向量形式写法。给神经元一个输入x=[2,3],可以用向量点积的形式把神经元的输出计算出来:
w·x+b =(x1 × w1)+(x2 × w2)+ b = 0×2+1×3+4=7
y=f(w?X+b)=f(7)=0.999
以上步骤的Python代码是:
import numpy as np def sigmoid(x): # Our activation function: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x)) class Neuron: def __init__(self, weights, bias): self.weights = weights self.bias = bias def feedforward(self, inputs): # Weight inputs, add bias, then use the activation function total = np.dot(self.weights, inputs) + self.bias return sigmoid(total) weights = np.array([0, 1]) # w1 = 0, w2 = 1 bias = 4 # b = 4 n = Neuron(weights, bias) x = np.array([2, 3]) # x1 = 2, x2 = 3 print(n.feedforward(x)) # 0.9990889488055994
我们在代码中调用了一个强大的Python数学函数库NumPy。
搭建神经网络
神经网络就是把一堆神经元连接在一起,下面是一个神经网络的简单举例:
这个网络有2个输入、一个包含2个神经元的隐藏层(h1和h2)、包含1个神经元的输出层o1。
隐藏层是夹在输入输入层和输出层之间的部分,一个神经网络可以有多个隐藏层。
把神经元的输入向前传递获得输出的过程称为前馈(feedforward)。
我们假设上面的网络里所有神经元都具有相同的权重w=[0,1]和偏置b=0,激活函数都是sigmoid,那么我们会得到什么输出呢?
h1=h2=f(w?x+b)=f((0×2)+(1×3)+0)
=f(3)
=0.9526
o1=f(w?[h1,h2]+b)=f((0?h1)+(1?h2)+0)
=f(0.9526)
=0.7216
以下是实现代码:
import numpy as np # ... code from previous section here class OurNeuralNetwork: ''' A neural network with: - 2 inputs - a hidden layer with 2 neurons (h1, h2) - an output layer with 1 neuron (o1) Each neuron has the same weights and bias: - w = [0, 1] - b = 0 ''' def __init__(self): weights = np.array([0, 1]) bias = 0 # The Neuron class here is from the previous section self.h1 = Neuron(weights, bias) self.h2 = Neuron(weights, bias) self.o1 = Neuron(weights, bias) def feedforward(self, x): out_h1 = self.h1.feedforward(x) out_h2 = self.h2.feedforward(x) # The inputs for o1 are the outputs from h1 and h2 out_o1 = self.o1.feedforward(np.array([out_h1, out_h2])) return out_o1 network = OurNeuralNetwork() x = np.array([2, 3]) print(network.feedforward(x)) # 0.7216325609518421
训练神经网络
现在我们已经学会了如何搭建神经网络,现在我们来学习如何训练它,其实这就是一个优化的过程。
假设有一个数据集,包含4个人的身高、体重和性别:
现在我们的目标是训练一个网络,根据体重和身高来推测某人的性别。
为了简便起见,我们将每个人的身高、体重减去一个固定数值,把性别男定义为1、性别女定义为0。
在训练神经网络之前,我们需要有一个标准定义它到底好不好,以便我们进行改进,这就是损失(loss)。
比如用均方误差(MSE)来定义损失:
n是样本的数量,在上面的数据集中是4;
y代表人的性别,男性是1,女性是0;
ytrue是变量的真实值,ypred是变量的预测值。
顾名思义,均方误差就是所有数据方差的平均值,我们不妨就把它定义为损失函数。预测结果越好,损失就越低,训练神经网络就是将损失最小化。
如果上面网络的输出一直是0,也就是预测所有人都是男性,那么损失是:
MSE= 1/4 (1+0+0+1)= 0.5
计算损失函数的代码如下:
import numpy as np def mse_loss(y_true, y_pred): # y_true and y_pred are numpy arrays of the same length. return ((y_true - y_pred) ** 2).mean() y_true = np.array([1, 0, 0, 1]) y_pred = np.array([0, 0, 0, 0]) print(mse_loss(y_true, y_pred)) # 0.5
减少神经网络损失
这个神经网络不够好,还要不断优化,尽量减少损失。我们知道,改变网络的权重和偏置可以影响预测值,但我们应该怎么做呢?
为了简单起见,我们把数据集缩减到只包含Alice一个人的数据。于是损失函数就剩下Alice一个人的方差:
预测值是由一系列网络权重和偏置计算出来的:
所以损失函数实际上是包含多个权重、偏置的多元函数:
(注意!前方高能!需要你有一些基本的多元函数微分知识,比如偏导数、链式求导法则。)
如果调整一下w1,损失函数是会变大还是变小?我们需要知道偏导数?L/?w1是正是负才能回答这个问题。
根据链式求导法则:
而L=(1-ypred)2,可以求得第一项偏导数:
接下来我们要想办法获得ypred和w1的关系,我们已经知道神经元h1、h2和o1的数学运算规则:
实际上只有神经元h1中包含权重w1,所以我们再次运用链式求导法则:
然后求?h1/?w1
我们在上面的计算中遇到了2次激活函数sigmoid的导数f′(x),sigmoid函数的导数很容易求得:
总的链式求导公式:
这种向后计算偏导数的系统称为反向传播(backpropagation)。
上面的数学符号太多,下面我们带入实际数值来计算一下。h1、h2和o1
h1=f(x1?w1+x2?w2+b1)=0.0474
h2=f(w3?x3+w4?x4+b2)=0.0474
o1=f(w5?h1+w6?h2+b3)=f(0.0474+0.0474+0)=f(0.0948)=0.524
神经网络的输出y=0.524,没有显示出强烈的是男(1)是女(0)的证据。现在的预测效果还很不好。
我们再计算一下当前网络的偏导数?L/?w1:
这个结果告诉我们:如果增大w1,损失函数L会有一个非常小的增长。
随机梯度下降
下面将使用一种称为随机梯度下降(SGD)的优化算法,来训练网络。
经过前面的运算,我们已经有了训练神经网络所有数据。但是该如何操作?SGD定义了改变权重和偏置的方法:
η是一个常数,称为学习率(learning rate),它决定了我们训练网络速率的快慢。将w1减去η·?L/?w1,就等到了新的权重w1。
当?L/?w1是正数时,w1会变小;当?L/?w1是负数 时,w1会变大。
如果我们用这种方法去逐步改变网络的权重w和偏置b,损失函数会缓慢地降低,从而改进我们的神经网络。
训练流程如下:
1、从数据集中选择一个样本;
2、计算损失函数对所有权重和偏置的偏导数;
3、使用更新公式更新每个权重和偏置;
4、回到第1步。
我们用Python代码实现这个过程:
import numpy as np def sigmoid(x): # Sigmoid activation function: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x)) def deriv_sigmoid(x): # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x)) fx = sigmoid(x) return fx * (1 - fx) def mse_loss(y_true, y_pred): # y_true and y_pred are numpy arrays of the same length. return ((y_true - y_pred) ** 2).mean() class OurNeuralNetwork: ''' A neural network with: - 2 inputs - a hidden layer with 2 neurons (h1, h2) - an output layer with 1 neuron (o1) *** DISCLAIMER ***: The code below is intended to be simple and educational, NOT optimal. Real neural net code looks nothing like this. DO NOT use this code. Instead, read/run it to understand how this specific network works. ''' def __init__(self): # Weights self.w1 = np.random.normal() self.w2 = np.random.normal() self.w3 = np.random.normal() self.w4 = np.random.normal() self.w5 = np.random.normal() self.w6 = np.random.normal() # Biases self.b1 = np.random.normal() self.b2 = np.random.normal() self.b3 = np.random.normal() def feedforward(self, x): # x is a numpy array with 2 elements. h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1) h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2) o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3) return o1 def train(self, data, all_y_trues): ''' - data is a (n x 2) numpy array, n = # of samples in the dataset. - all_y_trues is a numpy array with n elements. Elements in all_y_trues correspond to those in data. ''' learn_rate = 0.1 epochs = 1000 # number of times to loop through the entire dataset for epoch in range(epochs): for x, y_true in zip(data, all_y_trues): # --- Do a feedforward (we'll need these values later) sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1 h1 = sigmoid(sum_h1) sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2 h2 = sigmoid(sum_h2) sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3 o1 = sigmoid(sum_o1) y_pred = o1 # --- Calculate partial derivatives. # --- Naming: d_L_d_w1 represents "partial L / partial w1" d_L_d_ypred = -2 * (y_true - y_pred) # Neuron o1 d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1) d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1) d_ypred_d_b3 = deriv_sigmoid(sum_o1) d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1) d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1) # Neuron h1 d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1) d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1) d_h1_d_b1 = deriv_sigmoid(sum_h1) # Neuron h2 d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2) d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2) d_h2_d_b2 = deriv_sigmoid(sum_h2) # --- Update weights and biases # Neuron h1 self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1 self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2 self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1 # Neuron h2 self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3 self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4 self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2 # Neuron o1 self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5 self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6 self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3 # --- Calculate total loss at the end of each epoch if epoch % 10 == 0: y_preds = np.apply_along_axis(self.feedforward, 1, data) loss = mse_loss(all_y_trues, y_preds) print("Epoch %d loss: %.3f" % (epoch, loss)) # Define dataset data = np.array([ [-2, -1], # Alice [25, 6], # Bob [17, 4], # Charlie [-15, -6], # Diana ]) all_y_trues = np.array([ 1, # Alice 0, # Bob 0, # Charlie 1, # Diana ]) # Train our neural network! network = OurNeuralNetwork() network.train(data, all_y_trues)
随着学习过程的进行,损失函数逐渐减小。
现在我们可以用它来推测出每个人的性别了:
# Make some predictions emily = np.array([-7, -3]) # 128 pounds, 63 inches frank = np.array([20, 2]) # 155 pounds, 68 inches print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - F print("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M
更多
这篇教程只是万里长征第一步,后面还有很多知识需要学习:
1、用更大更好的机器学习库搭建神经网络,如Tensorflow、Keras、PyTorch
2、在浏览器中的直观理解神经网络:https://playground.tensorflow.org/
3、学习sigmoid以外的其他激活函数:https://keras.io/activations/
4、学习SGD以外的其他优化器:https://keras.io/optimizers/
5、学习卷积神经网络(CNN)
6、学习递归神经网络(RNN)
这些都是Victor给自己挖的“坑”。他表示自己未来“可能”会写这些主题内容,希望他能陆续把这些坑填完。如果你想入门神经网络,不妨去订阅他的博客。
关于这位小哥
Victor Zhou是普林斯顿2019级CS毕业生,已经拿到Facebook软件工程师的offer,今年8月入职。他曾经做过JS编译器,还做过两款页游,一个仇恨攻击言论的识别库。
最后附上小哥的博客链接:
https://victorzhou.com/
— 完 —
诚挚招聘
量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。
量子位 QbitAI · 头条号签约作者
?'?' ? 追踪AI技术和产品新动态
相关推荐
- 史上最全的浏览器兼容性问题和解决方案
-
微信ID:WEB_wysj(点击关注)◎◎◎◎◎◎◎◎◎一┳═┻︻▄(页底留言开放,欢迎来吐槽)●●●...
-
- 平面设计基础知识_平面设计基础知识实验收获与总结
-
CSS构造颜色,背景与图像1.使用span更好的控制文本中局部区域的文本:文本;2.使用display属性提供区块转变:display:inline(是内联的...
-
2025-02-21 16:01 yuyutoo
- 写作排版简单三步就行-工具篇_作文排版模板
-
和我们工作中日常word排版内部交流不同,这篇教程介绍的写作排版主要是用于“微信公众号、头条号”网络展示。写作展现的是我的思考,排版是让写作在网格上更好地展现。在写作上花费时间是有累积复利优势的,在排...
- 写一个2048的游戏_2048小游戏功能实现
-
1.创建HTML文件1.打开一个文本编辑器,例如Notepad++、SublimeText、VisualStudioCode等。2.将以下HTML代码复制并粘贴到文本编辑器中:html...
- 今天你穿“短袖”了吗?青岛最高23℃!接下来几天气温更刺激……
-
最近的天气暖和得让很多小伙伴们喊“热”!!! 昨天的气温到底升得有多高呢?你家有没有榜上有名?...
- CSS不规则卡片,纯CSS制作优惠券样式,CSS实现锯齿样式
-
之前也有写过CSS优惠券样式《CSS3径向渐变实现优惠券波浪造型》,这次再来温习一遍,并且将更为详细的讲解,从布局到具体样式说明,最后定义CSS变量,自定义主题颜色。布局...
- 你的自我界限够强大吗?_你的自我界限够强大吗英文
-
我的结果:A、该设立新的界限...
- 行内元素与块级元素,以及区别_行内元素和块级元素有什么区别?
-
行内元素与块级元素首先,CSS规范规定,每个元素都有display属性,确定该元素的类型,每个元素都有默认的display值,分别为块级(block)、行内(inline)。块级元素:(以下列举比较常...
-
- 让“成都速度”跑得潇潇洒洒,地上地下共享轨交繁华
-
去年的两会期间,习近平总书记在参加人大会议四川代表团审议时,对治蜀兴川提出了明确要求,指明了前行方向,并带来了“祝四川人民的生活越来越安逸”的美好祝福。又是一年...
-
2025-02-21 16:00 yuyutoo
- 今年国家综合性消防救援队伍计划招录消防员15000名
-
记者24日从应急管理部获悉,国家综合性消防救援队伍2023年消防员招录工作已正式启动。今年共计划招录消防员15000名,其中高校应届毕业生5000名、退役士兵5000名、社会青年5000名。本次招录的...
- 一起盘点最新 Chrome v133 的5大主流特性 ?
-
1.CSS的高级attr()方法CSSattr()函数是CSSLevel5中用于检索DOM元素的属性值并将其用于CSS属性值,类似于var()函数替换自定义属性值的方式。...
- 竞走团体世锦赛5月太仓举行 世界冠军杨家玉担任形象大使
-
style="text-align:center;"data-mce-style="text-align:...
- 学物理能做什么?_学物理能做什么 卢昌海
-
作者:曹则贤中国科学院物理研究所原标题:《物理学:ASourceofPowerforMan》在2006年中央电视台《对话》栏目的某期节目中,主持人问过我一个的问题:“学物理的人,如果日后不...
-
- 你不知道的关于这只眯眼兔的6个小秘密
-
在你们忙着给熊本君做表情包的时候,要知道,最先在网络上引起轰动的可是这只脸上只有两条缝的兔子——兔斯基。今年,它更是迎来了自己的10岁生日。①关于德艺双馨“老艺...
-
2025-02-21 16:00 yuyutoo
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- mybatis plus (70)
- scheduledtask (71)
- css滚动条 (60)
- java学生成绩管理系统 (59)
- 结构体数组 (69)
- databasemetadata (64)
- javastatic (68)
- jsp实用教程 (53)
- fontawesome (57)
- widget开发 (57)
- vb net教程 (62)
- hibernate 教程 (63)
- case语句 (57)
- svn连接 (74)
- directoryindex (69)
- session timeout (58)
- textbox换行 (67)
- extension_dir (64)
- linearlayout (58)
- vba高级教程 (75)
- iframe用法 (58)
- sqlparameter (59)
- trim函数 (59)
- flex布局 (63)
- contextloaderlistener (56)