百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 编程网 > 正文

从基本原理到梯度下降算法:零基础也能看懂的神经网络教程

yuyutoo 2024-10-12 00:58 1 浏览 0 评论

晓查 发自 凹非寺

量子位 报道 | 公众号 QbitAI

“我在网上看到过很多神经网络的实现方法,但这一篇是最简单、最清晰的。”

一位来自普林斯顿的华人小哥Victor Zhou,写了篇神经网络入门教程,在线代码网站Repl.it联合创始人Amjad Masad看完以后,给予如是评价。



这篇教程发布仅天时间,就在Hacker News论坛上收获了574赞。程序员们纷纷夸赞这篇文章的代码写得很好,变量名很规范,让人一目了然。

下面就让我们一起从零开始学习神经网络吧。

实现方法

搭建基本模块——神经元

在说神经网络之前,我们讨论一下神经元(Neurons),它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。比如一个2输入神经元的例子:



在这个神经元中,输入总共经历了3步数学运算,

先将两个输入乘以权重(weight):

x1→x1 × w1

x2→x2 × w2

把两个结果想加,再加上一个偏置(bias):

(x1 × w1)+(x2 × w2)+ b

最后将它们经过激活函数(activation function)处理得到输出:

y = f(x1 × w1 + x2 × w2 + b)

激活函数的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是sigmoid函数:



sigmoid函数的输出介于0和1,我们可以理解为它把 (?∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。

举个例子,上面神经元里的权重和偏置取如下数值:

w=[0,1]

b = 4

w=[0,1]是w1=0、w2=1的向量形式写法。给神经元一个输入x=[2,3],可以用向量点积的形式把神经元的输出计算出来:

w·x+b =(x1 × w1)+(x2 × w2)+ b = 0×2+1×3+4=7

y=f(w?X+b)=f(7)=0.999

以上步骤的Python代码是:

import numpy as np
def sigmoid(x):
 # Our activation function: f(x) = 1 / (1 + e^(-x))
 return 1 / (1 + np.exp(-x))
class Neuron:
 def __init__(self, weights, bias):
 self.weights = weights
 self.bias = bias
 def feedforward(self, inputs):
 # Weight inputs, add bias, then use the activation function
 total = np.dot(self.weights, inputs) + self.bias
 return sigmoid(total)
weights = np.array([0, 1]) # w1 = 0, w2 = 1
bias = 4 # b = 4
n = Neuron(weights, bias)
x = np.array([2, 3]) # x1 = 2, x2 = 3
print(n.feedforward(x)) # 0.9990889488055994

我们在代码中调用了一个强大的Python数学函数库NumPy

搭建神经网络

神经网络就是把一堆神经元连接在一起,下面是一个神经网络的简单举例:



这个网络有2个输入、一个包含2个神经元的隐藏层(h1和h2)、包含1个神经元的输出层o1

隐藏层是夹在输入输入层和输出层之间的部分,一个神经网络可以有多个隐藏层。

把神经元的输入向前传递获得输出的过程称为前馈(feedforward)。

我们假设上面的网络里所有神经元都具有相同的权重w=[0,1]和偏置b=0,激活函数都是sigmoid,那么我们会得到什么输出呢?

h1=h2=f(w?x+b)=f((0×2)+(1×3)+0)

=f(3)

=0.9526

o1=f(w?[h1,h2]+b)=f((0?h1)+(1?h2)+0)

=f(0.9526)

=0.7216

以下是实现代码:

import numpy as np
# ... code from previous section here
class OurNeuralNetwork:
 '''
 A neural network with:
 - 2 inputs
 - a hidden layer with 2 neurons (h1, h2)
 - an output layer with 1 neuron (o1)
 Each neuron has the same weights and bias:
 - w = [0, 1]
 - b = 0
 '''
 def __init__(self):
 weights = np.array([0, 1])
 bias = 0
 # The Neuron class here is from the previous section
 self.h1 = Neuron(weights, bias)
 self.h2 = Neuron(weights, bias)
 self.o1 = Neuron(weights, bias)
 def feedforward(self, x):
 out_h1 = self.h1.feedforward(x)
 out_h2 = self.h2.feedforward(x)
 # The inputs for o1 are the outputs from h1 and h2
 out_o1 = self.o1.feedforward(np.array([out_h1, out_h2]))
 return out_o1
network = OurNeuralNetwork()
x = np.array([2, 3])
print(network.feedforward(x)) # 0.7216325609518421

训练神经网络

现在我们已经学会了如何搭建神经网络,现在我们来学习如何训练它,其实这就是一个优化的过程。

假设有一个数据集,包含4个人的身高、体重和性别:



现在我们的目标是训练一个网络,根据体重和身高来推测某人的性别。



为了简便起见,我们将每个人的身高、体重减去一个固定数值,把性别男定义为1、性别女定义为0。



在训练神经网络之前,我们需要有一个标准定义它到底好不好,以便我们进行改进,这就是损失(loss)。

比如用均方误差(MSE)来定义损失:



n是样本的数量,在上面的数据集中是4;

y代表人的性别,男性是1,女性是0;

ytrue是变量的真实值,ypred是变量的预测值。

顾名思义,均方误差就是所有数据方差的平均值,我们不妨就把它定义为损失函数。预测结果越好,损失就越低,训练神经网络就是将损失最小化。

如果上面网络的输出一直是0,也就是预测所有人都是男性,那么损失是:



MSE= 1/4 (1+0+0+1)= 0.5

计算损失函数的代码如下:

import numpy as np
def mse_loss(y_true, y_pred):
 # y_true and y_pred are numpy arrays of the same length.
 return ((y_true - y_pred) ** 2).mean()
y_true = np.array([1, 0, 0, 1])
y_pred = np.array([0, 0, 0, 0])
print(mse_loss(y_true, y_pred)) # 0.5

减少神经网络损失

这个神经网络不够好,还要不断优化,尽量减少损失。我们知道,改变网络的权重和偏置可以影响预测值,但我们应该怎么做呢?

为了简单起见,我们把数据集缩减到只包含Alice一个人的数据。于是损失函数就剩下Alice一个人的方差:



预测值是由一系列网络权重和偏置计算出来的:



所以损失函数实际上是包含多个权重、偏置的多元函数:



(注意!前方高能!需要你有一些基本的多元函数微分知识,比如偏导数、链式求导法则。)

如果调整一下w1,损失函数是会变大还是变小?我们需要知道偏导数?L/?w1是正是负才能回答这个问题。

根据链式求导法则:



而L=(1-ypred)2,可以求得第一项偏导数:



接下来我们要想办法获得ypred和w1的关系,我们已经知道神经元h1、h2和o1的数学运算规则:



实际上只有神经元h1中包含权重w1,所以我们再次运用链式求导法则:


然后求?h1/?w1



我们在上面的计算中遇到了2次激活函数sigmoid的导数f′(x),sigmoid函数的导数很容易求得:



总的链式求导公式:



这种向后计算偏导数的系统称为反向传播(backpropagation)。

上面的数学符号太多,下面我们带入实际数值来计算一下。h1、h2和o1

h1=f(x1?w1+x2?w2+b1)=0.0474

h2=f(w3?x3+w4?x4+b2)=0.0474

o1=f(w5?h1+w6?h2+b3)=f(0.0474+0.0474+0)=f(0.0948)=0.524

神经网络的输出y=0.524,没有显示出强烈的是男(1)是女(0)的证据。现在的预测效果还很不好。

我们再计算一下当前网络的偏导数?L/?w1



这个结果告诉我们:如果增大w1,损失函数L会有一个非常小的增长。

随机梯度下降

下面将使用一种称为随机梯度下降(SGD)的优化算法,来训练网络。

经过前面的运算,我们已经有了训练神经网络所有数据。但是该如何操作?SGD定义了改变权重和偏置的方法:



η是一个常数,称为学习率(learning rate),它决定了我们训练网络速率的快慢。将w1减去η·?L/?w1,就等到了新的权重w1

当?L/?w1是正数时,w1会变小;当?L/?w1是负数 时,w1会变大。

如果我们用这种方法去逐步改变网络的权重w和偏置b,损失函数会缓慢地降低,从而改进我们的神经网络。

训练流程如下:

1、从数据集中选择一个样本;

2、计算损失函数对所有权重和偏置的偏导数;

3、使用更新公式更新每个权重和偏置;

4、回到第1步。

我们用Python代码实现这个过程:

import numpy as np
def sigmoid(x):
 # Sigmoid activation function: f(x) = 1 / (1 + e^(-x))
 return 1 / (1 + np.exp(-x))
def deriv_sigmoid(x):
 # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x))
 fx = sigmoid(x)
 return fx * (1 - fx)
def mse_loss(y_true, y_pred):
 # y_true and y_pred are numpy arrays of the same length.
 return ((y_true - y_pred) ** 2).mean()
class OurNeuralNetwork:
 '''
 A neural network with:
 - 2 inputs
 - a hidden layer with 2 neurons (h1, h2)
 - an output layer with 1 neuron (o1)
 *** DISCLAIMER ***:
 The code below is intended to be simple and educational, NOT optimal.
 Real neural net code looks nothing like this. DO NOT use this code.
 Instead, read/run it to understand how this specific network works.
 '''
 def __init__(self):
 # Weights
 self.w1 = np.random.normal()
 self.w2 = np.random.normal()
 self.w3 = np.random.normal()
 self.w4 = np.random.normal()
 self.w5 = np.random.normal()
 self.w6 = np.random.normal()
 # Biases
 self.b1 = np.random.normal()
 self.b2 = np.random.normal()
 self.b3 = np.random.normal()
 def feedforward(self, x):
 # x is a numpy array with 2 elements.
 h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
 h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
 o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
 return o1
 def train(self, data, all_y_trues):
 '''
 - data is a (n x 2) numpy array, n = # of samples in the dataset.
 - all_y_trues is a numpy array with n elements.
 Elements in all_y_trues correspond to those in data.
 '''
 learn_rate = 0.1
 epochs = 1000 # number of times to loop through the entire dataset
 for epoch in range(epochs):
 for x, y_true in zip(data, all_y_trues):
 # --- Do a feedforward (we'll need these values later)
 sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
 h1 = sigmoid(sum_h1)
 sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
 h2 = sigmoid(sum_h2)
 sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
 o1 = sigmoid(sum_o1)
 y_pred = o1
 # --- Calculate partial derivatives.
 # --- Naming: d_L_d_w1 represents "partial L / partial w1"
 d_L_d_ypred = -2 * (y_true - y_pred)
 # Neuron o1
 d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1)
 d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)
 d_ypred_d_b3 = deriv_sigmoid(sum_o1)
 d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)
 d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)
 # Neuron h1
 d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)
 d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)
 d_h1_d_b1 = deriv_sigmoid(sum_h1)
 # Neuron h2
 d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)
 d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2)
 d_h2_d_b2 = deriv_sigmoid(sum_h2)
 # --- Update weights and biases
 # Neuron h1
 self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
 self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
 self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1
 # Neuron h2
 self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3
 self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4
 self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2
 # Neuron o1
 self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5
 self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6
 self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3
 # --- Calculate total loss at the end of each epoch
 if epoch % 10 == 0:
 y_preds = np.apply_along_axis(self.feedforward, 1, data)
 loss = mse_loss(all_y_trues, y_preds)
 print("Epoch %d loss: %.3f" % (epoch, loss))
# Define dataset
data = np.array([
 [-2, -1], # Alice
 [25, 6], # Bob
 [17, 4], # Charlie
 [-15, -6], # Diana
])
all_y_trues = np.array([
 1, # Alice
 0, # Bob
 0, # Charlie
 1, # Diana
])
# Train our neural network!
network = OurNeuralNetwork()
network.train(data, all_y_trues)

随着学习过程的进行,损失函数逐渐减小。



现在我们可以用它来推测出每个人的性别了:

# Make some predictions
emily = np.array([-7, -3]) # 128 pounds, 63 inches
frank = np.array([20, 2]) # 155 pounds, 68 inches
print("Emily: %.3f" % network.feedforward(emily)) # 0.951 - F
print("Frank: %.3f" % network.feedforward(frank)) # 0.039 - M

更多

这篇教程只是万里长征第一步,后面还有很多知识需要学习:

1、用更大更好的机器学习库搭建神经网络,如Tensorflow、Keras、PyTorch

2、在浏览器中的直观理解神经网络:https://playground.tensorflow.org/

3、学习sigmoid以外的其他激活函数:https://keras.io/activations/

4、学习SGD以外的其他优化器:https://keras.io/optimizers/

5、学习卷积神经网络(CNN)

6、学习递归神经网络(RNN)

这些都是Victor给自己挖的“坑”。他表示自己未来“可能”会写这些主题内容,希望他能陆续把这些坑填完。如果你想入门神经网络,不妨去订阅他的博客。

关于这位小哥

Victor Zhou是普林斯顿2019级CS毕业生,已经拿到Facebook软件工程师的offer,今年8月入职。他曾经做过JS编译器,还做过两款页游,一个仇恨攻击言论的识别库。



最后附上小哥的博客链接:

https://victorzhou.com/

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

?'?' ? 追踪AI技术和产品新动态

相关推荐

jQuery VS AngularJS 你更钟爱哪个?

在这一次的Web开发教程中,我会尽力解答有关于jQuery和AngularJS的两个非常常见的问题,即jQuery和AngularJS之间的区别是什么?也就是说jQueryVSAngularJS?...

Jquery实时校验,指定长度的「负小数」,小数位未满末尾补0

在可以输入【负小数】的输入框获取到焦点时,移除千位分隔符,在输入数据时,实时校验输入内容是否正确,失去焦点后,添加千位分隔符格式化数字。同时小数位未满时末尾补0。HTML代码...

如何在pbootCMS前台调用自定义表单?pbootCMS自定义调用代码示例

要在pbootCMS前台调用自定义表单,您需要在后台创建表单并为其添加字段,然后在前台模板文件中添加相关代码,如提交按钮和表单验证代码。您还可以自定义表单数据的存储位置、添加文件上传字段、日期选择器、...

编程技巧:Jquery实时验证,指定长度的「负小数」

为了保障【负小数】的正确性,做成了通过Jquery,在用户端,实时验证指定长度的【负小数】的方法。HTML代码<inputtype="text"class="forc...

一篇文章带你用jquery mobile设计颜色拾取器

【一、项目背景】现实生活中,我们经常会遇到配色的问题,这个时候去百度一下RGB表。而RGB表只提供相对于的颜色的RGB值而没有可以验证的模块。我们可以通过jquerymobile去设计颜色的拾取器...

编程技巧:Jquery实时验证,指定长度的「正小数」

为了保障【正小数】的正确性,做成了通过Jquery,在用户端,实时验证指定长度的【正小数】的方法。HTML做成方法<inputtype="text"class="fo...

jquery.validate检查数组全部验证

问题:html中有多个name[],每个参数都要进行验证是否为空,这个时候直接用required:true话,不能全部验证,只要这个数组中有一个有值就可以通过的。解决方法使用addmethod...

Vue进阶(幺叁肆):npm查看包版本信息

第一种方式npmviewjqueryversions这种方式可以查看npm服务器上所有的...

layui中使用lay-verify进行条件校验

一、layui的校验很简单,主要有以下步骤:1.在form表单内加上class="layui-form"2.在提交按钮上加上lay-submit3.在想要校验的标签,加上lay-...

jQuery是什么?如何使用? jquery是什么功能组件

jQuery于2006年1月由JohnResig在BarCampNYC首次发布。它目前由TimmyWilson领导,并由一组开发人员维护。jQuery是一个JavaScript库,它简化了客户...

django框架的表单form的理解和用法-9

表单呈现...

jquery对上传文件的检测判断 jquery实现文件上传

总体思路:在前端使用jquery对上传文件做部分初步的判断,验证通过的文件利用ajaxFileUpload上传到服务器端,并将文件的存储路径保存到数据库。<asp:FileUploadI...

Nodejs之MEAN栈开发(四)-- form验证及图片上传

这一节增加推荐图书的提交和删除功能,来学习node的form提交以及node的图片上传功能。开始之前需要源码同学可以先在git上fork:https://github.com/stoneniqiu/R...

大数据开发基础之JAVA jquery 大数据java实战

上一篇我们讲解了JAVAscript的基础知识、特点及基本语法以及组成及基本用途,本期就给大家带来了JAVAweb的第二个知识点jquery,大数据开发基础之JAVAjquery,这是本篇文章的主要...

推荐四个开源的jQuery可视化表单设计器

jquery开源在线表单拖拉设计器formBuilder(推荐)jQueryformBuilder是一个开源的WEB在线html表单设计器,开发人员可以通过拖拉实现一个可视化的表单。支持表单常用控件...

取消回复欢迎 发表评论: